Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 10 năm 2023 - 2024 trường THPT Tĩnh Gia 1 - Thanh Hóa

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Tĩnh Gia 1, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề học sinh giỏi Toán 10 năm 2023 – 2024 trường THPT Tĩnh Gia 1 – Thanh Hóa : + Để xây dựng hầm Thủ Thiêm, các kỹ sư đã đúc các đốt hầm ở Nhơn Trạch (Đồng Nai), cách vị trí cầu 20 km. Khi đốt hầm được đúc xong, người ta tiến hành dùng các tàu kéo để đưa các đốt hầm về lại vị trí hầm Thủ Thiêm (như hình vẽ). Biết rằng 2 tàu lai dắt phía trước có lực kéo như nhau là 3000N và cùng tạo với đường đi của “đốt hầm” một góc là 30°. Tính công của của hai tàu lai dắt một đốt hầm trong quảng đường 500 m. + Từ các chữ số 0; 1; 2; 3; 4; 5. a) Lập được 600 số tự nhiên có 6 chữ số đôi một khác nhau. b) Lập được 216 số tự nhiên có 6 chữ số đôi một khác nhau chia hết cho 5. c) Lập được 156 số chẵn có bốn chữ số đôi một khác nhau d) Lập được 256 số tự nhiên có bốn chữ số đôi một khác nhau luôn có mặt số 0 và 1. + Trong một đề thi trắc nghiệm môn Toán có loại câu hỏi trả lời dạng đúng sai. Một câu hỏi có 4 ý hỏi, mỗi ý hỏi học sinh chỉ cần trả lời đúng hoặc chỉ trả lời sai. Nếu 1 ý trả lời đúng đáp án thì được 0,1 điểm, đúng đáp án 2 ý được 0,25 điểm, đúng đáp án 3 ý được 0,5 điểm và đúng đáp án cả 4 ý được 1 điểm. Giả sử một thí sinh làm bài bằng cách chọn phương án ngẫu nhiên để trả lời cho 2 câu hỏi loại đúng sai này. Hỏi có bao nhiêu cách chọn phương án để học sinh đó được 1 điểm ở phần trả lời 2 câu hỏi này.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi Toán 10 năm 2020 - 2021 trường Phùng Khắc Khoan - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề học sinh giỏi Toán 10 năm học 2020 – 2021 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề học sinh giỏi Toán 10 năm 2020 – 2021 trường Phùng Khắc Khoan – Hà Nội : + Trong mặt phẳng với tọa độ Oxy, cho tam giác ABC, BE và CD là các đường cao của tam giác.Giả sử D(2;0), E(1;3) và đường thẳng BC có phương trình: y = 1 – 2x. a/ Tìm tọa độ của M biết M là trung điểm của BC. b/ Tìm tọa độ của điểm B biết B có hoành độ dương. + Cho các số thực x, y, z thỏa mãn x + y + z = 0, x2 + y2 + z2 = 8. Tìm giá trị nhỏ nhất của biểu thức S = |x| + |y| + |z|. + Cho lục giác ABCDEF có AB vuông góc với EF và hai tam giác ACE và BDF có cùng trọng tâm. Chứng minh rằng AB2 + EF2 = CD2.
Đề HSG cấp trường Toán 10 năm 2020 - 2021 trường Yên Phong 2 - Bắc Ninh
Thứ Tư ngày 10 tháng 03 năm 2021, trường THPT Yên Phong số 2, tỉnh Bắc Ninh tổ chức kỳ thi chọn học sinh giỏi cấp trường môn Toán lớp 10 năm học 2020 – 2021. Đề HSG cấp trường Toán 10 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG cấp trường Toán 10 năm 2020 – 2021 trường Yên Phong 2 – Bắc Ninh : + Cho hàm số bậc hai với m là tham số. a) Vẽ đồ thị hàm số (1) khi m = 2. b) Tìm điểm cố định mà đồ thị hàm số (1) luôn đi qua với mọi giá trị của m. c) Tìm tất cả các giá trị của tham số m để đồ thị hàm số (1) cắt trục hoành tại hai điểm phân biệt có hoành độ thỏa mãn. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC. a) Tìm tọa điểm D sao cho DA DB DC. b) Viết phương trình đường thẳng đi qua D và tạo với đường thẳng AB góc 45°. c) Tính bán kính đường tròn ngoại tiếp tam giác ABC. +  Cho ba số thực thỏa mãn x + y + z = 4. Tìm giá trị lớn nhất của biểu thức.
Đề Olympic 27 tháng 4 Toán 10 năm 2020 - 2021 sở GDĐT Bà Rịa - Vũng Tàu
Thứ Sáu ngày 12 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu tổ chức kỳ thi Olympic 27 tháng 4 môn Toán lớp 10 năm học 2020 – 2021. Đề Olympic 27 tháng 4 Toán 10 năm 2020 – 2021 sở GD&ĐT Bà Rịa – Vũng Tàu gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút.
Đề chọn HSG Toán 10 vòng 1 năm 2020 - 2021 trường THPT Trần Nguyên Hãn - Hải Phòng
Đề chọn HSG Toán 10 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng được biên soạn theo hình thức đề thi tự luận, đề gồm 01 trang với 06 bài toán, thời gian học sinh làm bài thi là 180 phút, đề thi có lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề chọn HSG Toán 10 vòng 1 năm 2020 – 2021 trường THPT Trần Nguyên Hãn – Hải Phòng : + Tìm tất cả các giá trị của tham số m để hàm số y = (2m – 1)x2 – 2mx + m + 2 đồng biến trên khoảng (1;+vc). + Cho số thực a < 0 và hai tập hợp A = (-vc;4a); B = [16/a;+vc). Tìm tất cả các giá trị của a để A giao B bằng tập hợp rỗng. + Tìm tất cả các giá trị của tham số m để phương trình (x – m)/(x – 1) + (x – 2)/(x + 1) = 2 vô nghiệm.