Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng toán trắc nghiệm góc lượng giác và công thức lượng giác

Tài liệu gồm 54 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chủ đề góc lượng giác và công thức lượng giác trong chương trình Đại số 10 chương 6; các bài toán được phân dạng, có đáp án và lời giải chi tiết. Mục lục tài liệu các dạng toán trắc nghiệm góc lượng giác và công thức lượng giác: Chủ đề 1 . Góc và cung lượng giác. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Mối liên hệ giữa radian và độ 1 + Dạng toán 2. Đường tròn lượng giác và các bài toán liên quan. 2 Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Mối liên hệ giữa radian và độ 4 + Dạng toán 2. Đường tròn lượng giác và các bài toán liên quan. 5 Chủ đề 2 . Giá trị lượng giác của một cung. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Xét dấu của các giá trị lượng giác (Trang 1). + Dạng toán 2. Giá trị lượng giác của các cung có liên quan đặc biệt (Trang 2). + Dạng toán 3. Tính giá trị lượng giác (Trang 3). + Dạng toán 4. Rút gọn biểu thức lượng giác (Trang 6). Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Xét dấu của các giá trị lượng giác (Trang 9). + Dạng toán 2. Giá trị lượng giác của các cung có liên quan đặc biệt (Trang 10). + Dạng toán 3. Tính giá trị lượng giác (Trang 11). + Dạng toán 4. Rút gọn biểu thức lượng giác (Trang 15). [ads] Chủ đề 3 . Công thức lượng giác. Phần A . Câu hỏi và bài tập trắc nghiệm. + Dạng toán 1. Áp dụng công thức cộng (Trang 1). + Dạng toán 2. Áp dụng công thức nhân đôi và công thức hạ bậc (Trang 4). + Dạng toán 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích (Trang 5). + Dạng toán 4. Kết hợp các công thức lượng giác (Trang 7). + Dạng toán 5. Giá trị lớn nhất và giá trị nhỏ nhất (Trang 9). + Dạng toán 6. Nhận dạng tam giác (Trang 9). Phần B . Đáp án và lời giải chi tiết. + Dạng toán 1. Áp dụng công thức cộng (Trang 12). + Dạng toán 2. Áp dụng công thức nhân đôi và công thức hạ bậc (Trang 15). + Dạng toán 3. Áp dụng công thức biến đổi tích thành tổng, tổng thành tích (Trang 17). + Dạng toán 4. Kết hợp các công thức lượng giác (Trang 18). + Dạng toán 5. Giá trị lớn nhất và giá trị nhỏ nhất (Trang 22). + Dạng toán 6. Nhận dạng tam giác (Trang 23).

Nguồn: toanmath.com

Đọc Sách

Phương trình, hệ phương trình và bất phương trình lượng giác - Võ Anh Khoa, Hoàng Bá Minh
Sách gồm 200 trang với các bài tập phương trình lượng giác, hệ phương trình lượng giác và bất phương trình lượng giác được phân dạng thành: A – Sơ lược về hàm lượng giác ngược 1. Một số tính chất cơ bản về hàm lượng giác ngược 2. Bài tập ví dụ về hàm lượng giác ngược B – Phương trình lượng giác 1. Phương trình lượng giác cơ bản 2. Các dạng phương trình lượng giác đưa về phương trình lượng giác cơ bản a. Phương trình lượng giác bậc hai [ads] b. Phương trình lượng giác bậc nhất theo sinx và cosx c. Phương trình lượng giác đối xứng theo sinx và cosx d. Phương trình lượng giác bậc hai thuần nhất đối sinx và cosx e. Các dạng phương trình lượng giác khác + Phương trình lượng giác chứa căn thức + Phương trình lượng giác không mẫu mực + Phương trình lượng giác có chứa tham số C – Hệ phương trình lượng giác D – Bất phương trình lượng giác Tất cả các bài tập đều được giải chi tiết
Biến đổi lượng giác và hệ thức lượng - Võ Anh Khoa, Hoàng Bá Minh
Cuốn sách Biến đổi lượng giác và hệ thức lượng được biên soạn với mục đích cung cấp, bổ sung kiến thức cho học sinh THPT và một số bạn đọc quan tâm đến mảng kiến thức này trong quá trình học tập và làm việc. Ở cuốn sách này, ngoài việc đưa ra những khái niệm và dạng bài tập cơ bản, chúng tôi sẽ thêm vào đó lịch sử và ứng dụng của môn học này để các bạn hiểu rõ hơn “Nó xuất phát từ đâu và tại sao chúng ta lại phải học nó?”. Ở các chương chính, chúng tôi chia làm 3 phần: [ads] + Phần I: Nêu lý thuyết cùng ví dụ minh họa ngay sau đó, giúp bạn đọc hiểu và biết cách trình bày bài. Đồng thời đưa ra các dạng toán cơ bản, thường gặp trong quá trình làm bài trên lớp của học sinh THPT. Ở phần này, chúng tôi sẽ trình bày một số bài để bạn đọc có thể nắm vững hơn, tránh sai sót. + Phần II: Trong quá trình tham khảo và tổng hợp tài liệu, chúng tôi sẽ đưa vào phần này các dạng toán khó nhằm giúp cho các học sinh bồi dưỡng, rèn luyện kĩ năng giải LƯỢNG GIÁC thành thạo hơn khi gặp phải những dạng toán này. + Phần III: Chúng tôi sẽ đưa ra lời giải gợi ý cho một số bài, qua đó bạn đọc kiểm tra lại đáp số, lời giải hoặc cũng có thể tham khảo thêm.
Chuyên đề hàm số lượng giác và phương trình lượng giác - Trần Văn Tài
Tài liệu gồm 137 trang với nội dung gồm các phần: 1. Phương trình lượng giác đưa về bậc hai và bậc cao cùng 1 hàm lượng giác 2. Phương trình lượng giác bậc nhất đối với sin và cosin (phương trình cổ điển) 3. Phương trình lượng giác đẳng cấp (bậc 2, bậc 3, bậc 4) 4. Phương trình lượng giác đối xứng 5. Một số phương trình lượng giác dạng khác Trong mỗi phần gồm tóm tắt lý thuyết, các dạng toán, ví dụ mẫu và bài tập vận dụng có lời giải chi tiết.
Chuyên đề Lượng giác - Phạm Thu Hiền
Lượng giác đóng vai trò quan trọng và xuyên suốt trong chương trình toán phổ thông và được ứng dụng khá nhiều trong thực tế, đặc biệt là trong lĩnh vực nghiên cứu thiên văn. Đây sẽ là một trong những vấn đề quan trọng trong kì thi THPT quốc gia 2018, khi chương trình 10 và 11 được đưa vào trong đề thi. Chủ đề lượng giác được chia làm ba phần: + Phần 1: Cơ sở lí thuyết như cung liên kết, công thức lượng giác, hằng đẳng thức lượng giác, hàm số lượng giác. [ads] + Phần 2: Các dạng phương trình lượng giác thường gặp. + Phần 3: Một số bài toán lượng giác điển hình có liên quan. Chuyên đề chủ yếu xoay quanh các bài toán THPT, hi vọng sẽ giúp ích được phần nào cho bạn đọc, đặc biệt là các bạn học sinh THPT. Sẽ không tránh khỏi thiếu sót khi biên tập, rất mong nhận được sự đóng góp từ quý bạn đọc để chuyên đề ngày một hoàn thiện hơn.