Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề HSG lần 3 lớp 12 môn Toán năm 2022 2023 trường THPT Lê Lợi Thanh Hóa

Nội dung Đề HSG lần 3 lớp 12 môn Toán năm 2022 2023 trường THPT Lê Lợi Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát và chọn đội tuyển học sinh giỏi lần 3 môn Toán lớp 12 năm học 2022 – 2023 trường THPT Lê Lợi, tỉnh Thanh Hóa; đề thi có đáp án trắc nghiệm mã đề 121 122 123 124 125 126. Trích dẫn Đề HSG lần 3 Toán lớp 12 năm 2022 – 2023 trường THPT Lê Lợi – Thanh Hóa : + Chọn mệnh đề đúng trong các mệnh đề sau: A. Tâm tất cả các mặt của 1 hình lập phương thì tạo thành một hình tứ diện đều. B. Tâm tất cả các mặt của 1 hình lập phương thì tạo thành một hình lập phương. C. Tâm tất cả các mặt của 1 hình tứ diện đều thì tạo thành một hình lập phương. D. Tâm tất cả các mặt của 1 hình tứ diện đều thì tạo thành một hình tứ diện đều. + Người ta làm một thùng hàng hình lăng trụ tam giác đều có chiều cao 10m để chứa ba thiết bị có dạng khối trụ có cùng bán kính đáy là 1m và chiều cao 10m (với thiết diện mặt cắt như hình vẽ). Thể tích của phần không gian trống trong thùng hàng gần với giá trị nào dưới đây nhất? + Cho khối lăng trụ ABC A B C. Khoảng cách từ C đến đường thẳng BB′ bằng 5, khoảng cách từ A đến các đường thẳng BB′ và CC′ lần lượt bằng 1 và 2, hình chiếu vuông góc của A lên mặt phẳng (ABC) là trung điểm M của BC và AM′ = 5. Thể tích của khối tứ diện? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề minh họa kỳ thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Phú Thọ
Đề minh họa kỳ thi chọn HSG (học sinh giỏi) Toán 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang với 40 câu hỏi trắc nghiệm (có đáp án) và 4 bài toán tự luận (có đáp số), thời gian làm bài 180 phút. Trích dẫn đề thi : + Một khối trụ được sơn hai mặt đáy và phần xung quanh, khối trụ có chiều cao bằng 8 và bán kính đáy bằng 6. Một mặt phẳng (P) cắt hai đáy theo các dây cung cách tâm tương ứng một khoảng là 3, đồng thời chia khối trụ thành hai phần có thể tích bằng nhau. Tính diện tích của phần mặt phẳng cắt không được sơn. A. 30√3 + 20π B. 12π + 6√3 C. 15√3 + 10π D. 60π [ads] + Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, cho AB = a. Gọi I là trung điểm của AC. Biết hình chiếu của S lên mặt phẳng (ABC) là điểm H thỏa mãn vtBI = 3.vtIH và góc giữa hai mặt phẳng (SAB), (SBC) bằng 60 độ. Tính thể tích khối chóp S.ABC đã cho và tính khoảng cách giữa hai đường thẳng AB, SI theo a. + Đội dự tuyển thi học sinh giỏi Toán có 2 học sinh nữ, tham gia kỳ thi để chọn 4 học sinh vào đội tuyển chính thức. Biết xác suất trong đội tuyển chính thức có cả 2 học sinh nữ gấp 2 lần xác suất trong đội tuyển chính thức không có học sinh nữ nào, số học sinh của đội dự tuyển là: A. 9 B. 11 C. 5 D. 7