Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2023 2024 trường THCS Giảng Võ Hà Nội

Nội dung Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2023 2024 trường THCS Giảng Võ Hà Nội Bản PDF - Nội dung bài viết Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2023 2024 trường THCS Giảng Võ Hà Nội Đề thi giữa học kì 1 (HK1) lớp 9 môn Toán năm 2023 2024 trường THCS Giảng Võ Hà Nội Chúng ta sẽ cùng nhau tìm hiểu về đề thi giữa học kì 1 môn Toán lớp 9 năm học 2023 - 2024 trường THCS Giảng Võ, Hà Nội. Đây là một trong những đề thi quan trọng giúp các em học sinh tự kiểm tra kiến thức, đánh giá năng lực của mình trong môn Toán. Đề thi bắt đầu bằng một bài toán về Lotte Center - tòa cao ốc cao thứ hai tại Hà Nội, với chiều cao và góc tia nắng mặt trời tạo ra bóng của toà nhà. Bài toán này giúp các em rèn luyện kỹ năng tính toán, vận dụng kiến thức về hình học. Sau đó là bài toán về hình chữ nhật ABCD và các đoạn thẳng MB, MC cũng như góc ACB. Các em sẽ phải tính độ dài các đoạn thẳng, đo góc và chứng minh các bài toán liên quan đến tỉ lệ, phân giác góc. Để giải quyết được bài toán này, các em cần phải áp dụng kiến thức vững chắc về hình học Euclid và tính toán. Đề thi cũng đặt ra một bài toán khó hơn về tam giác PAQ đồng dạng với tam giác PMN và tính tỉ lệ diện tích giữa hai tam giác. Đây là một bài toán có tính sáng tạo, đòi hỏi sự linh hoạt trong tư duy và khả năng suy luận logic của các em. Đề thi giữa học kì 1 môn Toán lớp 9 năm 2023 - 2024 trường THCS Giảng Võ không chỉ là cơ hội để các em kiểm tra kiến thức mà còn là dịp để rèn luyện kỹ năng giải quyết vấn đề, tư duy logic và phản xạ nhanh nhạy. Hy vọng rằng các em sẽ tự tin và thành công trên bước đường học tập của mình.

Nguồn: sytu.vn

Đọc Sách

Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Sơn Đông - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Sơn Đông, Sơn Tây, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Sơn Đông – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Sơn Đông – Hà Nội : + Cho hai biểu thức. a) Tính giá trị của biểu thức A tại x = 25. b) Chứng minh 3 2 x B x. c) Tìm tất cả các giá trị nguyên của x để P AB có giá trị nguyên. + 1) Một cột đèn có bóng trên mặt đất dài 6m. Các tia nắng mặt trời tạo với mặt đất một góc xấp xỉ bằng 0 40. Tính chiều cao của cột đèn (làm tròn đến mét). 2) Cho tam giác ABC vuông tại A, đường cao AH. Biết AB cm AC cm 3 4. a) Tính AH b) Gọi D E lần lượt là hình chiếu của H trên AB và AC. Chứng minh tam giác AED và tam giác ABC đồng dạng. c) Kẻ trung tuyến AM gọi N là giao điểm của AM và DE. Tính tỉ số diện tích của tam giác AND và tam giác ABC. + Tìm các số xyz thỏa mãn đẳng thức.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Thanh Xuân, Thanh Xuân, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Cho biểu thức a) Tính giá trị của A khi 1 9 a b) Rút gọn B c) Tìm giá trị nguyên của a để B nhận giá trị nguyên. + Tính giá trị biểu thức. + Cho hình bình hành ABCD có 90 A α. Gọi I K lần lượt là hình chiếu của B′, D′ trên đường chéo AC. Gọi M N lần lượt là hình chiếu của C′ trên các đường thẳng A B. a) Chứng minh rằng: Tam giác BCM đồng dạng với tam giác DCN b) Chứng minh rằng: Tam giác CMN đồng dạng với tam giác BCA. Từ đó suy ra MN A C sinα c) Tính diện tích tứ giác ANCM biết BC 6 cm AB 4 cm và α 60. d) Chứng minh: 2 AC AD AN AB AM.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS thị trấn Văn Điển - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS thị trấn Văn Điển, Thanh Trì, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS thị trấn Văn Điển – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS thị trấn Văn Điển – Hà Nội : + Với x ≥ 0 và x ≠ 25 cho hai biểu thức. a) Tính A với x = 9. b) Chứng minh biểu thức 5Bx. c) Cho 3BPA. Tìm x nguyên để P có giá trị là một số nguyên. + Cho tam giác ABC vuông tại A, AB = 3 cm, AC = 4 cm. a) Giải tam giác ABC. b) Gọi I là trung điểm của BC vẽ AH BC. Tính AH AI. c) Qua A kẻ đường thẳng xy vuông góc với AI. Đường thẳng vuông góc với BC tại B cắt xy tại điểm M, đường thẳng vuông góc với BC tại C cắt xy tại điểm N. Chứng minh: 2 4 BC MB NC. d) Gọi K là trung điểm của AH. Chứng minh BKN thẳng hàng. + Giải phương trình: 2x.
Đề thi giữa kì 1 Toán 9 năm 2020 - 2021 trường THCS Vạn Phúc - Hà Nội
Nhằm kiểm tra đánh giá chất lượng dạy và học môn Toán lớp 9 định kỳ, ngày … tháng 11 năm 2020, trường THCS Vạn Phúc, Thanh Trì, thành phố Hà Nội tổ chức kỳ thi kiểm tra chất lượng giữa học kỳ 1 môn Toán 9 năm học 2020 – 2021. Đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Vạn Phúc – Hà Nội được biên soạn theo hình thức đề thi tự luận, đề gồm 05 câu, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi giữa kì 1 Toán 9 năm 2020 – 2021 trường THCS Vạn Phúc – Hà Nội : + Ở một thời điểm trong ngày, một cột cờ cao 11m có bóng trên mặt đất dài 6m. Hỏi góc giữa tia sáng mặt trời và bóng cột cờ là bao nhiêu? (làm tròn đến phút). + Cho hình chữ nhật ABCD có AB BC 9cm 12cm. Kẻ AH vuông góc với BD tại H. a) Tính BD AH và số đo góc ABD? b) Kẻ HI vuông góc với AB. Chứng minh AI AB DH HB. c) Đường thẳng AH cắt BC tại M và cắt DC tại N. Chứng minh 2 HA HM HN (làm tròn kết quả độ dài đến chữ số thập phân thứ 3 số đo góc đến độ). + Tìm x y thỏa mãn phương trình.