Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 9 năm 2022 - 2023 phòng GDĐT Hai Bà Trưng - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo UBND quận Hai Bà Trưng, thành phố Hà Nội; kỳ thi được diễn ra vào ngày … tháng 03 năm 2023. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2022 – 2023 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một mảnh đất hình chữ nhật có chu vi 80m. Nếu tăng chiều dài thêm 5m, giảm chiều rộng đi 5m thì diện tích của mảnh đất giảm đi 75m2. Tính diện tích của mảnh đất đó. Một hình trụ có diện tích toàn phần bằng 588pi cm2 và chiều cao bằng 5 lần bán kính đáy. Tính diện tích xung quanh của hình trụ đó. + Cho đường tròn (O) và một điểm A cố định nằm ngoài (O). Kẻ hai tiếp tuyến AB, AC với (O) (B và C là các tiếp điểm). Điểm M di động trên cung nhỏ BC (M khác B, M khác C). Đường thẳng AM cắt (O) tại điểm thứ hai là N. Gọi E là trung điểm của MN. a) Chứng minh bốn điểm A, B, E, O cùng thuộc một đường tròn. b) Chứng minh AC2 = AM.AN và MN2 = 4(AE2 – AC2). c) Gọi I, J lần lượt là hình chiếu của M trên cạnh AB, AC. Xác định vị trí của điểm M sao cho tích MI.MJ đạt giá trị lớn nhất. + Cho hai số thực x và y thỏa mãn 0 < x =< 1; 0 < y =< 1 và thỏa mãn x + y = 3xy. Tìm giá trị nhỏ nhất của biểu thức P = x2 + y2 − xy.

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND quận Tây Hồ, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024.
Đề khảo sát chất lượng Toán 9 năm 2023 - 2024 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng học sinh môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Sóc Sơn, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 27 tháng 03 năm 2024. Trích dẫn Đề khảo sát chất lượng Toán 9 năm 2023 – 2024 phòng GD&ĐT Sóc Sơn – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Mẹ An vào cửa hàng mua một chai dầu gội đầu và một chai sữa rửa mặt với tổng số tiền theo giá niêm yết là 360 nghìn đồng. Tuy nhiên, hôm nay cửa hàng có khuyến mại: chai dầu gội đầu giảm 10% còn chai sữa rửa mặt giảm 5% so với giá niêm yết. Do đó mẹ An thanh toán cho cửa hàng khi mua hai sản phẩm trên là 332 nghìn đồng. Tính giá tiền niêm yết tại cửa hàng của chai dầu gội đầu và chai sữa rửa mặt? + Một hộp sữa đặc dạng hình trụ có bán kính đáy là 3,5 cm; chiều cao 8 cm. Hỏi bên trong hộp chứa bao nhiêu mi-li-lít sữa? (Coi thể tích phần vỏ hộp không đáng kể và lấy pi = 3,14). + Cho tam giác ABC có ba góc nhọn và nội tiếp đường tròn (O). Kẻ đường cao AH của tam giác ABC và đường kính AK của (O). Gọi E là chân đường vuông góc kẻ từ điểm C đến đường thẳng AK. 1) Chứng minh tứ giác AHEC là tứ giác nội tiếp. 2) Chứng minh: HE // BK và AB.AE = AC.AH. 3) Lấy M là trung điểm của đoạn thẳng BC. Gọi F là chân đường vuông góc kẻ từ điểm B đến đường thẳng AK. Chứng minh rằng M là tâm đường tròn ngoại tiếp HEF.
Đề khảo sát Toán 9 năm 2023 - 2024 trường THCS Minh Khai - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát năng lực học sinh môn Toán 9 năm học 2023 – 2024 trường THCS Minh Khai, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 22 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm mã đề A – B. Trích dẫn Đề khảo sát Toán 9 năm 2023 – 2024 trường THCS Minh Khai – Hà Nội : + Trong mặt phẳng tọa độ Oxy cho đường thẳng d y ax b. Tìm a b để đường thẳng d có hệ số góc bằng 3 và đi qua điểm M(-1;2). + Cho phương trình 2 x mx m 2 20 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm 1 2 x (với 1 2 x) thỏa mãn hệ thức 2 x m 34. + Cho đường tròn tâm (O) đường kính AB, lấy điểm H thuộc đường kính AB, qua điểm H kẻ dây CD vuông góc với đường kính AB, lấy điểm E thuộc cung nhỏ BD (E khác B và D); AE cắt CD tại điểm F. 1. Chứng minh: Tứ giác BEFH nội tiếp. 2. Chứng minh: 2 CD AH HB 4. 3. Đường thẳng đi qua H song song với CE, cắt đường thẳng AE và BE lần lượt tại I và K. Gọi G là giao điểm của DE và IK, M là trung điểm của đoạn thẳng CE. Chứng minh: DI AE và ba đường thẳng CI, MG, BE đồng quy.
Đề khảo sát Toán 9 đợt 3 năm 2023 - 2024 phòng GDĐT Gia Lộc - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 đợt 3 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Gia Lộc, tỉnh Hải Dương. Trích dẫn Đề khảo sát Toán 9 đợt 3 năm 2023 – 2024 phòng GD&ĐT Gia Lộc – Hải Dương : + Một tổ trồng cây theo kế hoạch được giao trồng 600 cây trong một thời gian quy định. Khi thực hiện mỗi ngày tổ trồng thêm được 10 cây so với kế hoạch nên trước thời hạn quy định 3 ngày, tổ đã trồng hết số cây được giao. Hỏi mỗi ngày theo kế hoạch, tổ cần trồng bao nhiêu cây? + Một tòa nhà có bóng trên mặt đất dài 45,6 m. Cùng thời điểm đó, tia nắng mặt trời đi qua đỉnh tòa nhà hợp với mặt đất một góc 66° (như hình vẽ). Tính chiều cao của tòa nhà đó. (Làm tròn đến chữ số thập phân thứ nhất). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn tâm O. Tiếp tuyến đi qua B và C của đường tròn tâm O cắt nhau tại M. MA cắt đường tròn tâm O tại E (E khác A) và cắt BC tại F. Gọi N là trung điểm của AE. Đường thẳng BN cắt (O) tại K (K khác B). a) Chứng minh: Tứ giác MBOC là tứ giác nội tiếp. b) Chứng minh: ME.MA = MF.MN và NK = NC.