Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 10 môn Toán lần 2 năm 2022 2023 trường THPT Lý Thái Tổ Bắc Ninh

Nội dung Đề khảo sát lớp 10 môn Toán lần 2 năm 2022 2023 trường THPT Lý Thái Tổ Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra khảo sát chất lượng môn Toán lớp 10 lần 2 năm học 2022 – 2023 trường THPT Lý Thái Tổ, tỉnh Bắc Ninh; đề thi hình thức 60% trắc nghiệm + 40% tự luận, thời gian làm bài 90 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày 20 tháng 05 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề khảo sát Toán lớp 10 lần 2 năm 2022 – 2023 trường THPT Lý Thái Tổ – Bắc Ninh : + Trong cuộc thi cắm hoa của Đoàn trường THPT Lý Thái Tổ nhân dịp 92 năm ngày thành lập Đoàn TNCS Hồ Chí Minh 26 / 3 / 2023. Ban giám khảo đã chọn ra được 12 học sinh đạt giải trong đó có 7 học sinh nam và 5 học sinh nữ. Đoàn trường muốn chọn ra 5 học sinh trong 12 học sinh trên để đi thi giao lưu cùng với các trường trong thành phố Từ Sơn. Tính xác xuất để sao cho trong 5 học sinh này có cả học sinh nam và học sinh nữ mà số lượng học sinh nữ nhiều hơn số lượng học sinh nam? + Trong một hộp có 30 chiếc thẻ cùng loại được viết các số 1, 2, 3, …, 30 sao cho mỗi thẻ chỉ viết một số và hai thẻ khác nhau viết hai số khác nhau. Chọn ngẫu nhiên 2 thẻ trong hộp. Xác suất để 2 thẻ được chọn có tích của hai số được viết trên đó là số chia hết cho 3. + Số đôi giày bán ra trong tháng 12 năm 2022 của một cửa hàng được thống kê trong bảng tần số sau: Cỡ giày 36 37 38 39 40 41 42 43 44. Tần số ( Số đôi giày bán được) 20 28 25 50 35 35 21 45 32. Mốt của mẫu số liệu trên là bao nhiêu? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi Olympic Toán 10 năm 2023 - 2024 cụm Hà Đông Hoài Đức - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic dành cho học sinh môn Toán 10 năm học 2023 – 2024 cụm trường THPT Hà Đông & Hoài Đức, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 10 năm 2023 – 2024 cụm Hà Đông & Hoài Đức – Hà Nội : + Nhà máy dự định dùng hai loại nguyên liệu để sản xuất ít nhất 140 kg chất A và 18 kg chất B. Với mỗi tấn nguyên liệu loại I, nhà máy chiết xuất được 20 kg chất A và 1,2 kg chất B. Với mỗi tấn nguyên liệu loại II, nhà máy chiết xuất được 10 kg chất A và 3 kg chất B. Giá mỗi tấn nguyên liệu loại I là 8 triệu đồng và loại II là 6 triệu đồng. Hỏi nhà máy phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu là ít nhất mà vẫn đạt mục tiêu đề ra. Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp tối đa 9 tấn nguyên liệu loại I và 8 tấn nguyên liệu loại II. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC cân tại A có phương trình đường thẳng chứa cạnh AB là x y 2 2 0 phương trình đường thẳng chứa cạnh AC là 2 1 0 x y biết điểm M 12 thuộc đoạn thẳng BC. Tìm tọa độ điểm D sao cho DB DC có giá trị nhỏ nhất. + Xét các số thực x y z thỏa mãn đồng thời 0 1 x y z và 3 2 4 x y z tìm giá trị lớn nhất của biểu thức 2 S x y z 3 2.
Đề thi Olympic Toán 10 năm 2023 - 2024 cụm Hoàn Kiếm Hai Bà Trưng - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic môn Toán 10 năm học 2023 – 2024 cụm trường THPT Hoàn Kiếm & Hai Bà Trưng, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 10 năm 2023 – 2024 cụm Hoàn Kiếm & Hai Bà Trưng – Hà Nội : + Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (1 sản phẩm mới của công ty) cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B, trong đó xe loại A có 10 chiếc, xe loại B có 9 chiếc. Một chiếc xe loại A được cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi công ty phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất, biết rằng xe A chỉ chở được tối đa 20 người và 0,6 tấn hàng, xe B chở được tối đa 10 người và 1,5 tấn hàng. + Cho tam giác ABC có BC a CA b AB c. Ký hiệu a h là độ dài đường cao xuất phát từ đỉnh A và p là nửa chu vi của tam giác ABC. 1) Chứng minh 2 2 b c a b C c B cos cos. 2) Chứng minh tam giác ABC cân nếu thỏa mãn điều kiện. + Trong mặt phẳng tọa độ Oxy cho ABC biết B2 1 đường thẳng chứa đường cao và đường phân giác trong qua hai đỉnh A C có phương trình lần lượt là 3 4 27 0 x y và x y 2 5 0. 1) Viết phương trình tổng quát của đường thẳng BC và tìm tọa độ điểm C. 2) Viết phương trình tổng quát của đường thẳng AB.
Đề thi Olympic Toán 10 năm 2023 - 2024 liên cụm trường THPT - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi Olympic dành cho học sinh môn Toán 10 năm học 2023 – 2024 liên cụm trường THPT, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi Olympic Toán 10 năm 2023 – 2024 liên cụm trường THPT – Hà Nội : + Cho hàm số 2 y x mx m 2 1 có đồ thị P (m là tham số). 1) Chứng minh với mọi m 1 đồ thị P luôn cắt trục hoành tại hai điểm phân biệt. 2) Gọi A B là hai giao điểm phân biệt của đồ thị P với trục hoành, C là giao điểm của đồ thị P với trục tung và G là trọng tâm của tam giác ABC. Tìm tập hợp trọng tâm G của tam giác ABC khi m thay đổi. + Một nông trại dự định trồng cà rốt và khoai tây trên khu đất có diện tích 5 ha. Để chăm bón các loại cây này, nông trại phải dùng phân vi sinh. Nếu trồng cà rốt trên 1 ha cần dùng 3 tấn phân vi sinh và thu được 50 triệu đồng tiền lãi. Nếu trồng khoai tây trên 1 ha cần dùng 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tổng số tiền lãi cao nhất? Biết rằng số phân vi sinh cần dùng không được vượt quá 18 tấn. + Từ tập A lập được bao nhiêu số tự nhiên có 8 chữ số, trong đó có hai chữ số lẻ khác nhau và ba chữ số chẵn khác nhau, mà mỗi chữ số chẵn có mặt đúng hai lần?