Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra giữa học kì 2 Toán 9 năm 2021 - 2022 trường THCS Cát Linh - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2021 – 2022 trường THCS Cát Linh, quận Đống Đa, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 11 tháng 03 năm 2022. Trích dẫn đề kiểm tra giữa học kì 2 Toán 9 năm 2021 – 2022 trường THCS Cát Linh – Hà Nội : + Giải bài toán bằng cách lập hệ phương trình: Hai vòi nước cùng chảy vào một bể cạn trong 18 giờ thì đầy bể. Nếu vòi 1 chảy trong 4 giờ, vòi 2 chảy trong 7 giờ thì chỉ được 1/3 bể. Hỏi nếu mỗi vòi chảy một mình thì trong bao lâu sẽ đầy bể? + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AM, AN tới đường tròn (M, N là các tiếp điểm). 1) Chứng minh tứ giác AMON nội tiếp. 2) Trên cung nhỏ MN lấy điểm B khác M, N và B không là điểm chính giữa của cung MN. Tia AB cắt đường tròn (O) tại điểm thứ hai C. Chứng minh: AM2 = AB.AC. 3) Gọi H là giao điểm của AO và MN. Chứng minh: AHB = ACO. + Cho ba số thực không âm a b c và a + b + c = 3. Tìm giá trị lớn nhất của biểu thức K.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra giữa HK2 Toán 9 năm 2017 - 2018 phòng GD và ĐT Quận Tây Hồ - Hà Nội
Đề kiểm tra giữa HK2 Toán 9 năm 2017 – 2018 phòng GD và ĐT Quận Tây Hồ – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, đề nhằm đánh giá chất lượng học tập môn Toán của học sinh khối 9, đồng thời giúp các em ôn luyện chuẩn bị cho kỳ thi tuyển sính vào lớp 10 môn Toán năm 2018, đề thi có lời giải chi tiết . Trích dẫn đề kiểm tra giữa HK2 Toán 9 : + Theo kế hoạch hai tổ được giao sản xuât 600 sản phẩm trong một thời gian đã định. Do cải tiến kỹ thuật nên tôt I đã sản xuất vượt mức kế hoạch 18% và tổ II sản xuất vượt mức kế hoạch 21%. Vì vậy trong cùng một thời gian quy định hai tổ đã hoàn thành vượt mức 120 sản phẩm. Tính số sản phẩm được giao của mỗi tổ theo kế hoạch. [ads] + Cho đường tròn (O;R). Từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB, AC với đường tròn (B, C là hai tiếp điểm). Từ B kẻ đường thẳng song song với AC cắt (O) tại D (D khác B), đường thẳng AD cắt (O) tại E (E khác D). a) Chứng minh tứ giác ABOC nội tiếp. b) Chứng minh: AE.AD = AB^2. c) Chứng minh góc CEA = BEC. d) Giả sử OA = 3R. Tính khoảng cách giữa hai đường thẳng AC và BD theo R.