Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HK1 Toán 10 năm học 2017 - 2018 trường THPT chuyên Trần Phú - Hải Phòng

Đề thi HK1 Toán 10 năm học 2017 – 2018 trường THPT chuyên Trần Phú – Hải Phòng gồm 4 trang với 40 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi : + Cho phương trình (m^2 – 1)x + m + 1 = 0. Khẳng định nào dưới đây là sai? A. Khi m ≠ ±1, phương trình có nghiệm duy nhất B. Khi m = 1, phương trình có tập nghiệm S = ∅ C. Khi m = -1, phương trình có tập nghiệm S = R D. Khi m = ±1, phương trình vô nghiệm [ads] + Chuẩn bị được nghỉ hè, một lớp có 45 học sinh cùng bàn nhau để cả lớp cùng đi tham quan du lịch. Do sự lựa chọn của các bạn không được tập trung và thống nhất vào một địa điểm nào, Lớp Trưởng đã lấy biểu quyết bằng cách giơ tay. Kết quả, hai lần số bạn chọn đi Tam Đảo thì ít hơn ba lần số bạn chọn đi Hạ Long là 3 bạn và có 9 bạn chọn đi địa điểm khác. Với nguyên tắc số ít hơn phải theo số đông hơn thì họ sẽ tham quan du lịch đến địa điểm là: A. Địa điểm khác B. Tạm hoãn để bàn lại C. Tam Đảo D. Hạ Long + Cho tam giác ABC, tập hợp điểm M thỏa mãn |vtMA + vtBC| = 1/2.|vtMA – vtMB| là: A. Đường trung trực đoạn BC B. Đường tròn tâm I, bán kính R = AB/2 với I là đỉnh hình bình hành ABIC C. Đường thẳng song song với BC D. Đường tròn tâm I, bán kính R = AB/2 với I là đỉnh hình bình hành ABCI

Nguồn: toanmath.com

Đọc Sách

Đề thi học kỳ 1 Toán 10 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
Đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM gồm 01 trang với 08 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi học kỳ 1 Toán 10 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Viết phương trình đường thẳng d biết d đi qua điểm M(2;3) và song song với đường thẳng delta: y = 3x + 1. + Cho tam giác ABC có A(2;3); B(-1;-1); C(6;0). a) Tính độ dài AB; AC; BC suy ra tam giác ABC vuông cân. b) Tìm tọa độ điểm M thỏa MA + MB + MC = BC. + Cho tam giác ABC có AB = 5a, AC = 7a, góc A bằng 120 độ. Tính BC và diện tích tam giác ABC.
Đề thi HK1 Toán 10 năm 2019 - 2020 trường THPT Nguyễn Văn Cừ - TP HCM
Đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM gồm 02 trang với 20 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HK1 Toán 10 năm 2019 – 2020 trường THPT Nguyễn Văn Cừ – TP HCM : + Xác định parabol (P): y = x^2 + bx + c biết hoành độ đỉnh bằng 2 và đi qua điểm A(-2;-3). + Tìm tập xác định của hàm số f(x) = (2 + x)/(-3x^2). + Cho (P): y = -x^2 – 4x + 3. Tìm tọa độ đỉnh của parabol.
Đề thi cuối học kì 1 Toán 10 năm học 2019 - 2020 trường Việt Úc - TP HCM
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi cuối học kì 1 Toán 10 năm học 2019 – 2020 trường Việt Úc – TP HCM; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết và thang chấm điểm. Ma trận đề thi cuối học kì 1 Toán 10 năm học 2019 – 2020 trường Việt Úc – TP HCM:
Đề thi học kì 1 Toán 10 năm 2019 - 2020 trường Tạ Quang Bửu - Hà Nội
Thứ Sáu ngày 06 tháng 12 năm 2019, trường THCS và THPT Tạ Quang Bửu, thành phố Hà Nội tổ chức kiểm tra chất lượng cuối học kì 1 môn Toán lớp 10 năm học 2019 – 2020. Đề thi học kì 1 Toán 10 năm 2019 – 2020 trường Tạ Quang Bửu – Hà Nội được biên soạn theo dạng đề tự luận, đề gồm có 01 trang với 05 bài toán, học sinh có 90 phút để hoàn thành bài thi. Trích dẫn đề thi học kì 1 Toán 10 năm 2019 – 2020 trường Tạ Quang Bửu – Hà Nội : + Cho hàm số y = -x^2 + 4x + 5 có đồ thị (P). a) Lập bảng biến thiên và vẽ đồ thị (P) của hàm số. b) Tìm k để phương trình |-x^2 + 4x + 5| = k – 2 có 4 nghiệm phân biệt. [ads] + Cho phương trình (m – 2)x^2 + (2m – 1)x + m = 0. a) Giải phương trình khi m = 0. b) Với giá trị nào của m thì phương trình có hai nghiệm x1, x2 thỏa mãn x1 + x2 = -3. + Trong hệ tọa độ Oxy cho ba điểm A(3;-2), B(5;2), C(0;-3). a) Chứng minh ba điểm A, B, C không thẳng hàng. Tính BC. b) Tính AB.AC và cos ABC. c) Tìm tọa độ điểm D sao cho DA – 2DB = 0. d) Tìm tọa độ điểm M trên trục Oy sao cho |MB + MC| đạt giá trị nhỏ nhất.