Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước

Tài liệu gồm 20 trang, được biên soạn bởi nhóm tác giả Toán Học Bắc Trung Nam, hướng dẫn giải các bài toán liên quan đến tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước, đây là dạng toán vận dụng cao (VDC) thường gặp trong chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng; các bài toán trắc nghiệm trong tài liệu đều có đáp án và lời giải chi tiết. A. KIẾN THỨC CƠ BẢN 1. Định nghĩa Cho f là hàm số liên tục trên đoạn a b Giả sử F là một nguyên hàm của f trên. a b Hiệu số F b F a được gọi là tích phân từ a đến b hay tích phân xác định trên đoạn a b của hàm số f x kí hiệu là d. b a f x x Ta dùng kí hiệu b a F x F b F a để chỉ hiệu số F b F a. Vậy d b b a a f x x F x F b F a. Nhận xét: Tích phân của hàm số f từ a đến b có thể kí hiệu bởi d b a f x x hay d. b a f t t Tích phân đó chỉ phụ thuộc vào f và các cận a, b mà không phụ thuộc vào cách ghi biến số. Ý nghĩa hình học của tích phân: Nếu hàm số f liên tục và không âm trên đoạn a b thì tích phân d b a f x x là diện tích S của hình thang cong giới hạn bởi đồ thị hàm số y f x trục Ox và hai đường thẳng x a x b. Vậy d. b a S f x x. 2. Tính chất của tích phân 1. d 0 a a f x x 2. d d b a a b f x x f x x 3. d d d b c c a b a f x x f x x f x x a b c 4. d. d b b a a k f x x k f x x k 5. d d d b b b a a a f x g x x f x x g x x. Lưu ý: 1 f x là hàm số chẵn và liên tục trên đoạn a a;, a 0 thì 0 d 2 d a a a f x x f x x 2 f x là hàm số lẻ và liên tục trên đoạn a a a 0 thì d 0 a a f x x. Chuyên đề bài toán liên quan đến tính giá trị của tích phân khi biết một hay nhiều tích phân với điều kiện cho trước 3 f x là hàm số liên tục, tuần hoàn với chu kì T thì d a T a f x x 0 d T f x x 2 2 d T T f x x a R. B. BÀI TẬP

Nguồn: toanmath.com

Đọc Sách

Tổng ôn tập TN THPT 2021 môn Toán Nguyên hàm, tích phân và ứng dụng
Tài liệu gồm 163 trang, được tổng hợp bởi thầy giáo Nguyễn Bảo Vương, tuyển tập câu hỏi và bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng, có đáp án và lời giải chi tiết. Các câu hỏi và bài tập được trích từ các đề thi thử tốt nghiệp THPT năm 2021 môn Toán của các trường THPT và sở GD&ĐT trên cả nước, với mục đích giúp các em học sinh rèn luyện, rà soát kiến thức chủ đề Giải tích 12 chương 3, trước khi bước vào kỳ thi tốt nghiệp THPT 2021 môn Toán và các kỳ thi tuyển sinh Đại học – Cao đẳng. Mục lục tài liệu tổng ôn tập TN THPT 2021 môn Toán: Nguyên hàm, tích phân và ứng dụng: 1. Mức độ nhận biết: 105 câu. + Câu hỏi và bài tập (Trang 01). + Đáp án và lời giải chi tiết (Trang 15). 2. Mức độ thông hiểu: 94 câu. + Câu hỏi và bài tập (Trang 37). + Đáp án và lời giải chi tiết (Trang 50). 3. Mức độ vận dụng thấp: 57 câu. + Câu hỏi và bài tập (Trang 78). + Đáp án và lời giải chi tiết (Trang 89). 4. Mức độ vận dụng cao: 52 câu. + Câu hỏi và bài tập (Trang 115). + Đáp án và lời giải chi tiết (Trang 126). Xem thêm : + Tổng ôn tập TN THPT 2021 môn Toán: Ứng dụng đạo hàm và khảo sát hàm số + Tổng ôn tập TN THPT 2021 môn Toán: Hàm số lũy thừa – mũ – logarit
5 dạng toán ứng dụng của tích phân thường gặp
Tài liệu gồm 124 trang, được tổng hợp bởi thầy giáo Hoàng Tuyên và thầy giáo Lê Minh Tâm, tuyển chọn các dạng bài tập ứng dụng của tích phân thường gặp trong chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng). Các bài tập ứng dụng của tích phân được phân chia thành 5 dạng toán: DẠNG TOÁN 1 . ỨNG DỤNG CỦA TÍCH PHÂN TÍNH DIỆN TÍCH HÌNH PHẲNG. Dạng 1.1. Ứng dụng của tích phân tính diện tích hình phẳng (không có điều kiện). Dạng 1.2. Ứng dụng của tích phân tính diện tích hình phẳng (có điều kiện). DẠNG TOÁN 2 . ỨNG DỤNG CỦA TÍCH PHÂN TÍNH THỂ TÍCH KHỐI TRÒN XOAY. Dạng 2.1. Ứng dụng của tích phân tính thể tích khối tròn xoay (không có điều kiện). Dạng 2.2. Ứng dụng của tích phân tính thể tích khối tròn xoay (có điều kiện). DẠNG TOÁN 3 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI BÀI TOÁN CHUYỂN ĐỘNG. Dạng 3.1. Bài toán cho biết hàm số của vận tốc, quãng đường của chuyển động. Dạng 3.2. Bài toán cho biết đồ thị của vận tốc, quãng đường của chuyển động. DẠNG TOÁN 4 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI MỘT SỐ BÀI TOÁN THỰC TẾ. Dạng 4.1. Bài toán liên quan đến diện tích. Dạng 4.2. Bài toán liên quan đến thể tích. DẠNG TOÁN 5 . ỨNG DỤNG CỦA TÍCH PHÂN ĐỂ GIẢI MỘT SỐ BÀI TOÁN ĐẠI SỐ.
Ứng dụng tích phân trong các bài toán thực tế
Tài liệu gồm 77 trang, tuyển chọn và hướng dẫn giải các câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng tích phân trong các bài toán thực tế, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3 (nguyên hàm, tích phân và ứng dụng) và ôn thi tốt nghiệp THPT Quốc gia môn Toán năm học 2020 – 2021. Mục lục tài liệu ứng dụng tích phân trong các bài toán thực tế: A. Bài toán thực tế về vận tốc quãng đường (Trang 3). B. Bài toán thực tế về diện tích (Trang 23). C. Bài toán thực tế về thể tích (Trang 51).
Chuyên đề nguyên hàm, tích phân và ứng dụng - Nguyễn Trọng
Tài liệu gồm 36 trang, được biên soạn bởi thầy giáo Nguyễn Trọng, tóm tắt lý thuyết, ví dụ minh họa và bài tập trắc nghiệm chuyên đề nguyên hàm, tích phân và ứng dụng thuộc chương trình Giải tích 12 chương 3. Mục lục chuyên đề nguyên hàm, tích phân và ứng dụng – Nguyễn Trọng: Bài 1 . Nguyên hàm. + Dạng 1. Định nghĩa, tính chất và nguyên hàm cơ bản. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Phương pháp đổi biến. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 3. Nguyên hàm từng phần. a. Ví dụ minh họa. b. Bài tập áp dụng. Bài 2 . Tích phân. + Dạng 1. Tích phân dùng định nghĩa, tính chất. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Tích phân đổi biến số. 1. Đổi biến số dạng 1. a. Ví dụ minh họa. b. Bài tập áp dụng. 2. Đổi biến số dạng 2. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 3. Tích phân từng phần. 1. Dạng 1. $\int_\alpha ^\beta f \left( x \right)\left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax}\\ {{e^{ax}}} \end{array}} \right]dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. 2. Dạng 2. $\int_a^\beta f \left( x \right)\ln \left( {ax} \right)dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. 3. Dạng 3. $\int_\alpha ^\beta {{e^{ax}}} \left[ {\begin{array}{*{20}{l}} {\sin ax}\\ {\cos ax} \end{array}} \right]dx$. a. Ví dụ minh họa. b. Bài tập áp dụng. Bài 3 . Ứng dụng của tích phân trong hình học. + Dạng 1. Ứng dụng của tích phân tính diện tích hình phẳng. a. Ví dụ minh họa. b. Bài tập áp dụng. + Dạng 2. Ứng dụng của tích phân tính thể tích. a. Ví dụ minh họa. b. Bài tập áp dụng.