Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tuyển tập mũ và logarit trong các đề thi thử môn Toán 2018 có đáp án - Nguyễn Nhanh Tiến (Phần 1)

Tài liệu gồm 14 trang tuyển chọn 106 bài toán chủ đề mũ và logarit trong các đề thi thử môn Toán 2018, đề khảo sát chất lượng giữa HK1 Toán 12 và một số bài toán chọn lọc, tài liệu được tổng hợp và biên soạn bởi thầy Nguyễn Hữu Nhanh Tiến, các bài tập đều có đáp án. Trích dẫn tài liệu : + (Toán học tuổi trẻ Tháng 10 2017). Cho hai hàm số f(x) = log2 x, g(x) = 2^x. Xét các mệnh đề sau: (I). Đồ thị hai hàm số đối xứng nhau qua đường thẳng y = x (II). Tập xác định của hai hàm số trên là R (III). Đồ thị hai hàm số cắt nhau tại đúng 1 điểm (IV). Hai hàm số đều đồng biến trên tập xác định của nó Có bao nhiêu mệnh đề đúng trong các mệnh đề trên? A. 2   B. 3   C. 1   D. 4 [ads] + (Khảo sát giữa kì 1 Chuyên ĐH Vinh). Cho α là một số thực dương khác 1. Có bao nhiêu mệnh đề đúng trong các mệnh đề sau: 1. Hàm số y = logα x có tập xác định là D = (0; +∞) 2. Hàm số y = logα x là hàm đơn điệu trên khoảng (0; +∞) 3. Đồ thị hàm số y = logα x và đồ thị hàm số y = α^x đối xứng nhau qua đường thẳng y = x 4. Đồ thị hàm số y = logα x nhận Ox là một tiệm cận A. 4   B. 1   C. 3   D. 2 + (Giữa học kì 1 lớp 12 Chuyên Lê Hồng Phong – Nam Định). Cho hai hàm số y = f(x) = loga x và y = g(x) = a^x. Xét các mệnh đề sau: I. Đồ thị hàm số f(x) và g(x) luôn cắt nhau tại một điểm II. Hàm số f(x) + f(x) đồng biến khi a > 1, nghịch biến khi 0 < a < 1 III. Đồ thị hàm số f(x) nhận trục Oy làm tiệm cận IV. Chỉ có đồ thị hàm số f(x) có tiệm cận Số mệnh đề đúng là: A. 1   B. 2   C. 3   D. 4 Lưu ý :  Bạn đọc có thể tìm kiếm lời giải chi tiết bài tập mũ và logarit có trong tài liệu này tại chuyên mục đề thi thử môn Toán.

Nguồn: toanmath.com

Đọc Sách

Hàm số lũy thừa, hàm số mũ và hàm số logarit - Lê Quang Xe
Tài liệu gồm 144 trang, được biên soạn bởi thầy giáo Lê Quang Xe, tổng hợp lý thuyết cần nhớ, các dạng toán cơ bản và bài tập tự luyện chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, giúp học sinh lớp 12 tham khảo, rèn luyện khi học chương trình Giải tích 12 chương 2. BÀI 1 . LŨY THỪA. 1.1. LÝ THUYẾT CẦN NHỚ. 1.1.1. Lũy thừa với số mũ nguyên. 1.1.2. Lũy thừa với số mũ hữu tỉ. 1.1.3. Lũy thừa với số mũ vô tỉ. 1.1.4. Công thức biến đổi lũy thừa cần nhớ. 1.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 1.1. Tính giá trị biểu thức. Dạng 1.2. Rút gọn biểu thức liên quan đến lũy thừa. Dạng 1.3. So sánh hai lũy thừa. 1.3. BÀI TẬP TỰ LUYỆN. BÀI 2 . HÀM SỐ LŨY THỪA. 2.1. LÝ THUYẾT CẦN NHỚ. 2.1.1. Khái niệm. 2.1.2. Đồ thị hàm lũy thừa. 2.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 2.1. Tìm tập xác định của hàm số lũy thừa. Dạng 2.2. Tìm đạo hàm của hàm số lũy thừa. Dạng 2.3. Đồ thị của hàm số lũy thừa. 2.3. BÀI TẬP TỰ LUYỆN. BÀI 3 . LÔGARIT. 3.1. LÝ THUYẾT CẦN NHỚ. 3.1.1. Định nghĩa. 3.1.2. Tính chất. 3.1.3. Các công thức lôgarit cần nhớ. 3.1.4. Lôgarít thập phân và lôgarit tự nhiên. 3.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 3.1. So sánh hai lôgarit. Dạng 3.2. Công thức, tính toán lôgarit. Dạng 3.3. Phân tích biểu thức lôgarit theo các lô-ga-rit cho trước. Dạng 3.4. Xác định một số nguyên dương có bao nhiêu chữ số. Dạng 3.5. Tổng hợp biến đổi lôgarit nâng cao. 3.3. BÀI TẬP TỰ LUYỆN. BÀI 4 . HÀM SỐ MŨ, HÀM SỐ LÔGARIT. 4.1. LÝ THUYẾT CẦN NHỚ. 4.1.1. Hàm số mũ. 4.1.2. Hàm số lôgarit. 4.1.3. Liên hệ đồ thị của hai hàm số. 4.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 4.1. Tìm tập xác định. Dạng 4.2. Tính đạo hàm. Dạng 4.3. Giá trị lớn nhất và giá trị nhỏ nhất. Dạng 4.4. Các bài toán liên quan đến đồ thị. 4.3. BÀI TẬP TỰ LUYỆN. BÀI 5 . PHƯƠNG TRÌNH MŨ, PHƯƠNG TRÌNH LOGARIT CƠ BẢN. 5.1. LÝ THUYẾT CẦN NHỚ. 5.1.1. Công thức nghiệm của phương trình mũ. 5.1.2. Công thức nghiệm của phương trình lôgarit. 5.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 5.1. Giải phương trình mũ cơ bản, phương pháp đưa về cùng cơ số. Dạng 5.2. Giải phương trình mũ bằng phương pháp đặt ẩn phụ. Dạng 5.3. Giải phương trình mũ bằng phương pháp lôgarít hóa. Dạng 5.4. Giải phương trình lôgarit cơ bản, phương pháp đưa về cùng cơ số. Dạng 5.5. Giải phương trình lôgarít bằng phương pháp đặt ẩn phụ. Dạng 5.6. Giải phương trình mũ và lôgarít bằng phương pháp hàm số. 5.3. BÀI TẬP TỰ LUYỆN. BÀI 6 . BẤT PHƯƠNG TRÌNH MŨ, BẤT PHƯƠNG TRÌNH LOGARIT CƠ BẢN. 6.1. LÝ THUYẾT CẦN NHỚ. 6.1.1. Công thức nghiệm của bất phương trình mũ. 6.1.2. Công thức nghiệm của bất phương trình lôgarit. 6.2. CÁC DẠNG TOÁN CƠ BẢN. Dạng 6.1. Giải BPT mũ cơ bản, phương pháp đưa về cùng cơ số. Dạng 6.2. Giải bất phương trình mũ bằng phương pháp đặt ẩn phụ. Dạng 6.3. Giải BPT logarit bằng phương pháp đưa về cùng cơ số. Dạng 6.4. Giải bất phương trình lôgarit bằng phương pháp đặt ẩn phụ. Dạng 6.5. Bài toán lãi kép. 6.3. BÀI TẬP TỰ LUYỆN. BÀI 7 . PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH MŨ, LOGARIT CÓ CHỨA THAM SỐ. 7.1. CÁC DẠNG TOÁN CƠ BẢN. Dạng 7.1. Phương trình có nghiệm đẹp – Định lý Viét. Dạng 7.2. Phương trình không có nghiệm đẹp – Phương pháp hàm số. Dạng 7.3. Bất phương trình – Phương pháp hàm số. 7.2. BÀI TẬP TỰ LUYỆN.
Bài giảng phương trình lôgarit và bất phương trình lôgarit
Tài liệu gồm 34 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình lôgarit và bất phương trình lôgarit, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : 1. Biết cách giải các dạng phương trình lôgarit. 2. Biết cách giải các dạng bất phương trình lôgarit. Kĩ năng : 1. Giải được một số phương trình mũ và phương trình lôgarit đơn giản bằng các phương pháp đưa về cùng cơ số, lôgarit hóa, mũ hóa, đặt ẩn phụ, phương pháp hàm số. 2. Nhận dạng được các phương trình và bất phương trình lôgarit. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Phương trình lôgarit. – Bài toán 1. Biến đổi về dạng phương trình cơ bản. – Bài toán 2. Phương trình theo một hàm số lôgarit. – Bài toán 3. Phương pháp hàm số. – Bài toán 4. Mũ hóa hoặc lấy lôgarit hai vế. – Bài toán 5. Đặt ẩn phụ. – Bài toán 6. Phương trình tích. – Bài toán 7. Phương trình lôgarit chứa tham số. Dạng 2 : Bất phương trình lôgarit. – Bài toán 1. Biến đổi về dạng bất phương trình cơ bản. – Bài toán 2. Bất phương trình theo một hàm số lôgarit. – Bài toán 3. Phương pháp hàm số. – Bài toán 4. Mũ hóa hoặc lấy lôgarit hai vế. – Bài toán 5. Đặt ẩn phụ. – Bài toán 6. Bất phương trình tích. – Bài toán 7. Bất phương trình lôgarit chứa tham số.
Bài giảng phương trình mũ và bất phương trình mũ
Tài liệu gồm 35 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề phương trình mũ và bất phương trình mũ, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : + Biết được cách giải một số dạng phương trình mũ. + Biết được cách giải một số dạng bất phương trình mũ. Kĩ năng : + Giải được một số phương trình mũ và bất phương trình mũ đơn giản bằng các phương pháp đưa về cùng cơ số, logarit hóa, đặt ẩn phụ, tính chất của hàm số. + Nhận dạng được các loại phương trình mũ và bất phương trình mũ. I. LÍ THUYẾT TRỌNG TÂM I. CÁC DẠNG BÀI TẬP Dạng 1 : Phương trình mũ. – Bài toán 1. Biến đổi về dạng phương trình cơ bản. – Bài toán 2. Phương trình theo một hàm số mũ. – Bài toán 3. Lấy logarit hai vế. – Bài toán 4. Đặt nhân tử chung. – Bài toán 5. Phương pháp hàm số. – Bài toán 6. Phương trình chứa tham số. Dạng 2 : Bất phương trình mũ. – Bài toán 1. Biến đổi về dạng bất phương trình cơ bản. – Bài toán 2. Bất phương trình theo một hàm số mũ. – Bài toán 3. Lấy logarit hai vế. – Bài toán 4. Đặt nhân tử chung. – Bài toán 5. Phương pháp hàm số. – Bài toán 6. Bất phương trình chứa tham số.
Bài giảng hàm số mũ và hàm số lôgarit
Tài liệu gồm 39 trang, trình bày lí thuyết trọng tâm và hướng dẫn giải các dạng bài tập chuyên đề hàm số mũ và hàm số lôgarit, giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2: Hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Mục tiêu : Kiến thức : + Nắm vững khái niệm và tính chất của hàm số mũ, hàm số lôgarit. + Trình bày và áp dụng được công thức tìm đạo hàm của hàm số mũ, hàm số lôgarit. + Nhận biết dạng đồ thị của hàm số mũ, hàm số lôgarit. Kĩ năng : + Biết cách vận dụng tính chất của các hàm số mũ, hàm số lôgarit vào việc so sánh hai số, hai biểu thức chứa mũ và lôgarit. + Biết cách vẽ đồ thị các hàm số mũ, hàm số lôgarit. + Tìm được đạo hàm của hàm số mũ, hàm số lôgarit. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Đạo hàm, sự biến thiên của hàm số. – Bài toán 1. Tìm đạo hàm của các hàm số mũ – hàm số lôgarit. – Bài toán 2. Xét tính đồng biến, nghịch biến của hàm số mũ và hàm số lôgarit. Dạng 2 : Tập xác định của hàm số chứa mũ – lôgarit. – Bài toán 1. Tìm tập xác định của hàm số chứa mũ – lôgarit. – Bài toán 2. Tìm tham số m để hàm số xác định trên khoảng cho trước. Dạng 3 : Đồ thị hàm số. Dạng 4 : Bài tập lãi suất.