Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 2022 trường THCS Cầu Giấy Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 2022 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng lớp 9 môn Toán năm 2021-2022 trường THCS Cầu Giấy Hà Nội Đề khảo sát chất lượng lớp 9 môn Toán năm 2021-2022 trường THCS Cầu Giấy Hà Nội Xin chào quý thầy cô và các bạn học sinh lớp 9! Sytu xin giới thiệu đến các bạn đề thi khảo sát chất lượng môn Toán lớp 9 năm học 2021-2022 của trường THCS Cầu Giấy, Hà Nội. Kỳ thi sẽ diễn ra vào ngày 08 tháng 06 năm 2022, và đề thi sẽ có đáp án, lời giải chi tiết cũng như hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề khảo sát chất lượng Toán lớp 9 năm học 2021-2022 tại trường THCS Cầu Giấy, Hà Nội: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Bạn Bình mua một quyển từ điển và một món đồ chơi với tổng giá tiền theo niêm yết là 750 nghìn đồng. Vì Bình mua đúng dịp cửa hàng có chương trình khuyến mãi nên khi thanh toán giá quyển từ điển được giảm 20%, giá món đồ chơi được giảm 10%. Do đó Bình chỉ phải trả 630 nghìn đồng. Hỏi Bình mua mỗi thứ giá bao nhiêu tiền. Một bồn nước inox có dạng hình trụ chiều cao 2m, bán kính đáy 0,3m. Hỏi bồn nước này đựng đầy được bao nhiêu lít nước (lấy pi = 3,14). Cho đường tròn (O) đường kính AB. C là một điểm thuộc đường tròn sao cho AC < BC. Lấy điểm I thuộc BC (I khác B và C). AI cắt đường tròn tại điểm thứ hai là D. Gọi H là hình chiếu của I trên AB. a) Chứng minh tứ giác BDIH nội tiếp; b) Đường thẳng CH cắt đường tròn tại điểm thứ hai là K. Chứng minh rằng BI.BC = BH.BA và IH // DK; c) Kẻ KM vuông góc với AC tại M, KN vuông góc với BC tại N. Chứng minh các đường thẳng AB, DK và MN đồng quy. Hy vọng rằng đề thi sẽ giúp các bạn học sinh lớp 9 đánh giá được kiến thức của mình và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra đầu năm Toán 9 năm 2022 - 2023 trường THCS Dịch Vọng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Dịch Vọng, thành phố Hà Nội. Trích dẫn Đề kiểm tra đầu năm Toán 9 năm 2022 – 2023 trường THCS Dịch Vọng – Hà Nội : + Giải bài toán bằng cách lập phương trình: Một tổ công nhân được giao làm một số sản phẩm và dự định sản xuất 50 sản phẩm mỗi ngày. Trên thực tế có một số công nhân phải nghỉ việc do mắc Covid – 19 nên mỗi ngày tổ công nhân sản xuất được ít hơn 10 sản phẩm so với kế hoạch đề ra, do đó hoàn thành công việc chậm 1 ngày. Hỏi tổ công nhân đó được giao làm bao nhiêu sản phẩm? + Cho tam giác ABC vuông tại A có AB < AC, đường cao AH. a) Chứng minh tam giác ABC đồng dạng tam giác HBA. b) Cho AB = 3cm, BH = 1,8cm. Tính độ dài BC và AC. c) Điểm M di chuyển trên cạnh AC. Vẽ AD vuông góc BM tại D. Chứng minh BD.BM = BH.BC. d) Tìm vị trí điểm M trên cạnh AC để HD // AB. + Cho các số thực dương x và y thỏa mãn x + y = 1. Tìm giá trị lớn nhất của biểu thức P = x2y2(x2 + y2).
Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Xuân Đỉnh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Xuân Đỉnh, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2022.
Đề khảo sát đầu năm Toán 9 năm 2022 - 2023 trường THCS Nam Từ Liêm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng đầu năm môn Toán 9 năm học 2022 – 2023 trường THCS Nam Từ Liêm, thành phố Hà Nội; kỳ thi được diễn ra vào thứ Sáu ngày 07 tháng 10 năm 2022.
Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng định kì môn Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School, thành phố Hà Nội. Trích dẫn Đề kiểm tra Toán 9 tháng 9 năm 2022 hệ thống giáo dục Archimedes School – Hà Nội : + Hãy tính chiều cao của tháp Eiffel mà không cần lên tận đỉnh tháp khi biết góc tạo bởi tia nắng mặt trời với mặt đất là 74° và bóng của tháp trên mặt đất lúc đó là 86m (làm tròn kết quả tới hàng đơn vị). + Cho hàm số bậc nhất: y = (m + 1)x + 3 (d) với m khác -1. a) Vẽ đồ thị hàm số tại m = 1. b) Tìm m để đồ thị hàm số trên đi qua A(-1;-2). c) Tìm m để khoảng cách từ O(0;0) đến đường thẳng (d) bằng 3. + Cho nửa đường tròn (O), đường kính AB. Gọi C là điểm bất kì trên nửa đường tròn (O) (C khác A, C khác B). Từ C vẽ tia Ox là tiếp tuyến với nửa đường tròn (O). Từ O vẽ đường thẳng vuông góc với dây AC cắt tia Ox tại K. 1) Chứng minh KA là tiếp tuyến của nửa đường tròn (O). 2) Chứng minh bốn điểm K, A, O, C cùng thuộc một đường tròn. 3) Gọi H là hình chiếu vuông góc của C trên AB, D là điểm đối xứng với A qua C. I là trung điểm của CH. Gọi E là giao điểm của HD và BI. Chứng minh: HE.HD =HC2.