Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề đối xứng trục

Tài liệu gồm 16 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề đối xứng trục, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 1: Tứ giác. I. TÓM TẮT LÝ THUYẾT + Hai điểm đối xứng qua một đường thẳng: Hai điểm được gọi là đối xứng với nhau qua đường thẳng d nếu d là đường trung trực của đoạn thẳng nối hai điểm ấy. + Hai hình đối xứng qua một đường thẳng: Hai hình gọi là đối xứng với nhau qua đường thẳng d nếu một điểm bất kì thuộc hình này đối xứng với một điểm thuộc hình kia qua đường thẳng d và ngược lại. + Hình có trục đối xứng: Đường thẳng d gọi là trục đối xứng của hình H nếu điểm đối xúng với mỗi điểm thuộc hình H qua đường thẳng d cũng thuộc hình H. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI CƠ BẢN VÀ NÂNG CAO + Dạng 1. Chứng minh hai điểm hoặc hai hình đối xứng với nhau qua một đường thẳng. Phương pháp giải: Sử dụng định nghĩa hai điểm đối xứng hoặc hai hình đối xứng với nhau qua một đường thẳng. + Dạng 2. Sử dụng tính chất đối xứng trục để giải toán. Phương pháp giải: Sử dụng nhận xét hai đoạn thẳng đối xứng vói nhau qua một đường thẳng thì bằng nhau. + Dạng 3. Tổng hợp. B. DẠNG BÀI NÂNG CAO-PHÁT TRIỂN TƯ DUY C. PHIẾU BÀI TỰ LUYỆN CƠ BẢN VÀ NÂNG CAO ĐỐI XỨNG TRỤC Dạng 1: Chứng minh hai điểm hoặc hai hình đối xứng với nhau qua 1 đường thẳng. Dạng 2: Sử dụng tính chất đối xứng trục để giải toán. Dạng 3: Tìm trực đối xứng của một hình, hình có trục đối xứng. Dạng 4: Dựng hình có sử dụng đối xứng trục. Dạng 5: Tổng hợp.

Nguồn: toanmath.com

Đọc Sách

Đề cương học kì 2 Toán 8 năm 2023 - 2024 trường THCS Long Toàn - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề cương ôn tập cuối học kì 2 môn Toán 8 năm học 2023 – 2024 trường THCS Long Toàn, tỉnh Bà Rịa – Vũng Tàu. I. CÁC KIẾN THỨC TRỌNG TÂM A. Đại số. 1. Khái niệm hàm số và đồ thị của hàm số. 2. Hàm số bậc nhất và đồ thị của hàm số bậc nhất. 3. Hệ số góc của đường thẳng. 4. Phương tình bậc nhất một ẩn. 5. Giải bài toán bằng cách lập phương trình bậc nhất. B. Thống kê và xác suất. 1. Mô tả xác suất bằng tỉ số. 2. Xác suất lí thuyết và xác suất thực nghiệm. C. Hình học. 1. Định lí Thalès trong tam giác. 2. Đường trung bình của tam giác. 3. Tính chất đường phân giác của tam giác. 4. Hai tam giác đồng dạng. 5. Các trường hợp đồng dạng của hai tam giác. 6. Các trường hợp đồng dạng của hai tam giác vuông. 7. Hai hình đồng dạng. II. CÁC ĐỀ THAM KHẢO