Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng Toán 12 năm 2018 - 2019 sở GDĐT Phú Thọ

Thứ Sáu ngày 10 tháng 05 năm 2019, sở Giáo dục và Đào tạo tỉnh Phú Thọ tổ chức kỳ thi khảo sát chất lượng học sinh lớp 12 THPT môn Toán năm học 2018 – 2019, kỳ thi nhằm kiểm tra chất lượng học tập môn Toán của học sinh trong quá trình các em ôn tập chuẩn bị cho kỳ thi chính thức THPT Quốc gia môn Toán năm 2019 do Bộ Giáo dục và Đào tạo tổ chức. Đề khảo sát chất lượng Toán 12 năm 2018 – 2019 sở GD&ĐT Phú Thọ có mã đề 252, đề được biên soạn với hình thức và cấu trúc tương tự đề tham khảo THPT Quốc gia môn Toán năm 2019, đề gồm 6 trang với 50 câu hỏi và bài toán trắc nghiệm, trong đó tập trung chủ yếu vào nội dung chương trình Toán 12, học sinh làm bài trong khoảng thời gian 90 phút. [ads] Trích dẫn đề khảo sát chất lượng Toán 12 năm 2018 – 2019 sở GD&ĐT Phú Thọ : + Một khuôn viên dạng nửa hình tròn, trên đó người ta thiết kế phần trồng hoa hồng có dạng một hình parabol có đỉnh trùng với tâm hình tròn và có trục đối xứng vuông góc với đường kính của nửa đường tròn, hai đầu mút của parabol nằm trên đường tròn và cách nhau một khoảng 4 mét (phần tô đậm). Phần còn lại của khuôn viên (phần không tô màu) dùng để trồng hoa cúc. Biết các kích thước cho như hình vẽ. Chi phí để trồng hoa hồng và hoa cúc lần lượt là 120.000 đồng/m2 và 80.000 đồng/m2. Hỏi chi phí trồng hoa khuôn viên đó gần nhất với số tiền nào dưới đây (là tròn đến nghìn đồng). + Trong không gian Oxyz, cho mặt cầu (S): x^2 + y^2 + z^2 = 9 và mặt phẳng (P): 4x + 2y + 4z + 7 = 0. Hai mặt cầu có bán kính là R1 và R2 chứa đường tròn giao tuyến của (S) và (P) đồng thời cùng tiếp xúc với mặt phẳng (Q): 3y – 4z – 20 = 0. Tổng R1 + R2 bằng? + Đầu mỗi tháng, chị B gửi vào ngân hàng 3 triệu đồng theo hình thức lãi kép với lãi suất 0,6% một tháng và lãi suất không thay đổi trong suốt quá trình gửi tiền. Hỏi sau ít nhất bao nhiêu tháng chị B có được số tiền cả gốc và lãi nhiều hơn 150 triệu đồng?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Tây Ninh
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Tây Ninh có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị của hàm số bậc 3. Câu 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số. Câu 3: a) Tìm số phức z và tính môđun của z. b) Giải phương trình logarit. Câu 4: Tính tích phân. Câu 5: a) Viết phương trình mặt phẳng (P) đi qua điểm A và vuông góc với đường thẳng AB. b) Tìm điểm C thuộc trục x’Ox sao cho tam giác ABC vuông tại A. Câu 6: a) Giải giá trị của biểu thức lượng giác. b) Có 6 học sinh An, Bình, Xuân, Hạ, Thu, Đông tham gia công tác của trường. Nhà trường chia ngẫu nhiên các học sinh đó thành hai nhóm, mỗi nhóm 3 người. Tính xác suất để An và Bình ở chung một nhóm. Câu 7: Tính thể tích lăng trụ ABC.A’B’C’ và khoảng cách giữa hai đường thẳng AC và BA’ theo a. Câu 8: Tìm tọa độ các đỉnh của hình chữ nhật ABCD. Câu 9: Giải hệ phương trình. Câu 10: Tìm giá trị lớn nhất của biểu thức P.
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Hải Phòng
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Hải Phòng có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số phân thức hữu tỉ. Câu 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn. Câu 3: a) Tìm môđun của số phức w = 3 + 4z. b) Giải bất phương trình logarit. Câu 4: Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và trục hoành. Câu 5: Tìm tọa độ điểm I thuộc đường thẳng d sao cho khoảng cách từ I đến mặt phẳng (a) bằng 2. Câu 6: a) Giải phương trình lượng giác. b) Trong lễ khai mạc Hội khỏe Phù Đổng của trường THPT X, ban khánh tiết chọn đồng thời 5 bạn trong số 22 bạn lớp trưởng để đón tiếp khách. Tính xác suất trong 5 bạn được chọn có cả nam và nữ, biết trong 22 bạn lớp trưởng có 8 nam và 14 nữ. Câu 7: Tính theo a thể tích khối chóp S.ABCD và khoảng cách giữa hai đường thẳng SM và AC. Câu 8: Tìm tọa độ các đỉnh của hình bình hành ABCD, biết đỉnh C có hoành độ dương. Câu 9: Giải phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức Q.
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Cà Mau
Đề thi thử THPT Quốc gia 2016 môn Toán sở GD và ĐT Cà Mau có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số phân thức hữu tỉ. Câu 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn. Câu 3: a) Tìm môđun của số phức z. b) Giải phương trình mũ. Câu 4: Tính tích phân. Câu 5: Viết phương trình của đường thẳng d đi qua A và vuông góc với mặt phẳng (P). Tìm tọa độ giao điểm của đường thẳng d với mặt phẳng (P). Câu 6: a) Giải phương trình lượng giác. b) Một tổ học sinh có 6 học sinh nam và 4 học sinh nữ. Giáo viên gọi ngẫu nhiên 4 học sinh lên bảng làm bài tập. Tính xác suất để trong 4 học sinh được gọi có cả nam lẫn nữ và số nam không nhiều hơn số nữ. Câu 7: Tính theo a thể tích của khối chóp S.ABC và khoảng cách từ trọng tâm của tam giác SAC đến mặt phẳng (SBC). Câu 8: Tìm tọa độ các điểm P và Q. Câu 9: Giải hệ phương trình trên tập số thực. Câu 10: Tìm giá trị nhỏ nhất của biểu thức P.
Đề thi thử Quốc gia 2016 môn Toán trường Quảng Xương 3 - Thanh Hóa lần 4
Đề thi thử THPT Quốc gia 2016 môn Toán trường Quảng Xương 3 – Thanh Hóa lần 4 có đáp án và thang điểm chi tiết. Tóm tắt nội dung đề thi: Câu 1: Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số trùng phương. Câu 2: Tìm giá trị lớn nhất và nhỏ nhất của hàm số trên đoạn. Câu 3: a) Giải phương trình lượng giác. b) Giải bất phương trình logarit. Câu 4: Tìm số hạng chứa x^3 trong khai triển nhị thức Niu – tơn của biểu thức. Câu 5: Tìm tọa độ các đỉnh B’, C’ và viết phương trình mặt cầu đi qua bốn điểm A, B, C, A’. Câu 6: a) Tính giá trị của biểu thức lượng giác. b) Để thành lập đội tuyển dự thi học sinh giỏi giải toán trên máy tính cầm tay môn toán cấp tỉnh nhà trường cần chọn 5 em từ 8 em học sinh trên. Tính xác suất để trong 5 em được chọn có cả học sinh nam và học sinh nữ, có cả học sinh khối 11 và học sinh khối 12. Câu 7: Tính theo a thể tích khối chóp S.ABCD và tính góc giữa đường thẳng SD và mặt phẳng (SBC). Câu 8: Tìm tọa độ các đỉnh A, B và D của hình thang ABCD. Câu 9: Giải bất phương trình. Câu 10: Tìm giá trị nhỏ nhất của biểu thức P.