Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 7 năm 2023 - 2024 phòng GDĐT Lương Tài - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp huyện môn Toán 7 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Lương Tài, tỉnh Bắc Ninh; kỳ thi được diễn ra vào ngày 09 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 7 năm 2023 – 2024 phòng GD&ĐT Lương Tài – Bắc Ninh : + Một phố nhỏ có 44 người trong độ tuổi từ 1 đến 85 (tuổi mỗi người là một số nguyên dương). Chứng minh rằng trong số những người trên có hai người cùng tuổi hoặc có ba người mà tuổi của một người bằng tổng số tuổi của hai người kia. + Cho tam giác ABC vuông cân tại A. Giả sử D là điểm nằm bên trong tam giác sao cho tam giác ABD cân và 0 ADB 150. Trên nửa mặt phẳng không chứa D có bờ là đường thẳng AC lấy điểm E sao cho tam giác ACE là tam giác đều. Chứng minh ba điểm B, D, E thẳng hàng. + Một người gửi tiết kiệm vào ngân hàng với số tiền là 200 triệu đồng, gửi theo lãi suất 6% kì hạn một năm lĩnh lãi mỗi quí (3 tháng). Theo qui định nếu đến hạn mà không đến lĩnh lãi thì số đó sẽ được nhập vào vốn gửi ban đầu. Do công việc người đó không đến lĩnh quí thứ nhất, các quí còn lại vẫn đến lĩnh lãi bình thường. Vậy tổng số tiền gửi và lãi sau một năm người đó sẽ nhận được là bao nhiêu?

Nguồn: toanmath.com

Đọc Sách

Đề thi thử HSG lần 2 lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang
Nội dung Đề thi thử HSG lần 2 lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang Bản PDF - Nội dung bài viết Đề thi thử HSG lần 2 lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang Đề thi thử HSG lần 2 lớp 7 môn Toán năm 2022 2023 phòng GD ĐT Hiệp Hòa Bắc Giang Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 7 Đề thi thử học sinh giỏi cấp huyện lần 2 môn Toán lớp 7 năm học 2022 – 2023 của phòng Giáo dục và Đào tạo UBND huyện Hiệp Hòa, tỉnh Bắc Giang. Đề thi bao gồm các câu hỏi có đáp án và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi trong đề thi: Cho tam giác ABC có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm E sao cho ME MA. a) Chứng minh AC BE. b) Gọi I là một điểm trên đoạn thẳng AC, K là một điểm trên đoạn thẳng EB sao cho AI EK. Chứng minh ba điểm I, M, K thẳng hàng. Cho tam giác ABC cân tại A có ∠BAC = 20°. Vẽ tam giác đều BCD sao cho điểm D nằm trong tam giác ABC. Tia phân giác của ∠ABD cắt AC tại M. Chứng minh AM BC. Tìm số nguyên a để 2^a * a^3 chia hết cho a + 1. Tìm các số nguyên tố x, y thỏa mãn 2^(2x) * y^2 = 2^(x+1). Để tải file Word dành cho quý thầy cô, vui lòng truy cập vào đường link sau: [link download].
Đề thi học sinh giỏi lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Hương Trà TT Huế
Nội dung Đề thi học sinh giỏi lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Hương Trà TT Huế Bản PDF - Nội dung bài viết Đề thi học sinh giỏi lớp 7 môn Toán năm 2021 - 2022 phòng GD ĐT Hương Trà TT Huế Đề thi học sinh giỏi lớp 7 môn Toán năm 2021 - 2022 phòng GD ĐT Hương Trà TT Huế Sytu xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp thị xã môn Toán lớp 7 năm học 2021 - 2022 của phòng Giáo dục và Đào tạo Hương Trà, tỉnh Thừa Thiên Huế. Đề thi học sinh giỏi Toán lớp 7 năm 2021 - 2022 của phòng GD&ĐT Hương Trà - TT Huế bao gồm các câu hỏi đa dạng như sau: Tìm độ dài ba cạnh của tam giác có chu vi bằng 13cm, biết độ dài ba đường cao tương ứng lần lượt là 2cm, 3cm, 4cm. Cho tam giác ABC có góc B và góc C nhỏ hơn 90°, kẻ đường cao AH (H thuộc BC), vẽ ra phía ngoài tam giác các tam giác vuông cân ABD và ACE, vẽ DI và EK cùng vuông góc với đường thẳng BC. Chứng minh rằng: a) BI = CK; EK = HC. b) BC = DI + EK. Tìm giá trị lớn nhất của biểu thức: P. Khi đó x nhận giá trị nguyên nào? Đề thi này sẽ giúp các em học sinh lớp 7 rèn luyện kỹ năng giải bài toán, tư duy logic và phản xạ nhanh. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!
Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Đức Thọ Hà Tĩnh
Nội dung Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Đức Thọ Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Đức Thọ Hà Tĩnh Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Đức Thọ Hà Tĩnh Chúng tôi xin giới thiệu đến quý thầy cô và các em học sinh lớp 7 đề thi Olympic môn Toán lớp 7 năm học 2021 – 2022 của phòng Giáo dục và Đào tạo huyện Đức Thọ, tỉnh Hà Tĩnh. Kỳ thi đã diễn ra vào ngày 08 tháng 04 năm 2022. Dưới đây là một số câu hỏi trích dẫn từ đề thi Olympic Toán lớp 7 năm 2021 – 2022 của phòng GD&ĐT Đức Thọ – Hà Tĩnh: 1. Biết trung bình cộng của 16 số bằng 4. Thêm vào số thứ mười bảy thì trung bình cộng của chúng bằng 5. Hãy tìm số thứ mười bảy? 2. Một vật chuyển động trên các cạnh hình vuông. Trên hai cạnh đầu vật chuyển động với vận tốc 5 m/s, trên cạnh thứ ba với vận tốc 4 m/s, và trên cạnh thứ tư với vận tốc 3 m/s. Tính độ dài cạnh hình vuông biết rằng tổng thời gian vật chuyển động trên 4 cạnh là 59 giây. 3. Cho tam giác ABC vuông cân tại A; M là trung điểm của cạnh BC. Lấy điểm D bất kỳ thuộc đoạn thẳng BM. Kẻ BH vuông góc với AD (H thuộc AD), CI vuông góc với AD (I thuộc AD). Đường thẳng AM cắt CI tại N. Chứng minh rằng: a) DN vuông góc với AC. b) ΔΑΗΒ = ΔCIA. c) IM là tia phân giác của góc CID. Hy vọng rằng đề thi Olympic Toán lớp 7 đã mang lại cho các em học sinh một cơ hội thực hành và rèn luyện kỹ năng Toán hữu ích. Chúc các em thành công trong kỳ thi này!
Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Nghĩa Đàn Nghệ An
Nội dung Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Nghĩa Đàn Nghệ An Bản PDF - Nội dung bài viết Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Nghĩa Đàn Nghệ An Đề thi Olympic lớp 7 môn Toán năm 2021 2022 phòng GD ĐT Nghĩa Đàn Nghệ An Sytu xin được giới thiệu đến các thầy cô và các em học sinh lớp 7 đề thi Olympic môn Toán lớp 7 năm học 2021 - 2022 của phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Đề thi Olympic này sẽ giúp các em học sinh rèn luyện kỹ năng giải toán, phát triển tư duy logic và khả năng suy luận. Hy vọng rằng đề thi sẽ mang lại cơ hội cho các em tỏa sáng và thể hiện khả năng của mình trong môn Toán.