Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi khảo sát Toán 12 tháng 10 năm 2019 - 2020 trường Trần Phú - Vĩnh Phúc

Nhằm đáp ứng yêu cầu kiểm tra khảo sát chất lượng Toán 12 giai đoạn giữa học kỳ 1 và kiểm tra kiến thức hướng đến kỳ thi THPT Quốc gia 2020 môn Toán, trường THPT Trần Phú – Vĩnh Phúc tổ chức kỳ thi khảo sát tháng 10 môn Toán 12 năm học 2019 – 2020. Đề thi khảo sát Toán 12 tháng 10 năm học 2019 – 2020 trường THPT Trần Phú – Vĩnh Phúc có mã đề 101, đề gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề gồm các câu hỏi và bài toán trong chương trình Toán 11 và Toán 12 đã học – phù hợp với những định hướng về cấu trúc đề thi THPT Quốc gia môn Toán năm 2020 của Bộ Giáo dục và Đào tạo. Trích dẫn đề thi khảo sát Toán 12 tháng 10 năm 2019 – 2020 trường Trần Phú – Vĩnh Phúc : + Do lưu lượng nước từ thượng nguồn sông Đồng Nai đổ về lớn, trong khi hồ chứa đã tích gần đạt độ cao trình thiết kế, do đó công ty thủy điện Trị An đã xả nước điều tiết qua đập tràn. Tổng lượng nước xả xuống hạ du sông Đồng Nai trong một giây để đảm bảo an toàn nhất cho hạ du được cho bởi công thức F(x) = 1/1700.x^2.(225 – x), trong đó x là lưu lượng nước xả qua đập tràn trong một giây (x được tính bằng đơn vị m3). Lưu lượng nước x xả qua đập tràn là bao nhiêu để tổng lượng nước xả xuống hạ du sông Đồng Nai trong một giây là nhiều nhất? [ads] + Một người thợ thủ công làm mô hình đèn lồng bát diện đều, mỗi cạnh của bát diện đó được làm từ các que tre có độ dài 8 cm. Hỏi người đó cần bao nhiêu mét que tre để làm 100 cái đèn (giả sử mối nối giữa các que tre có độ dài không đáng kể)? + Gọi S là tập hợp các số tự nhiên gồm 3 chữ số được lập thành từ tập X = {1;2;3;…;8}. Rút ngẫu nhiên từ tập X một số tự nhiên. Tính xác suất để rút ra được số mà trong số đó chữ số đứng sau luôn lớn hơn hoặc bằng chữ số đứng trước?

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra Toán 12 năm 2022 trường Nguyễn Khuyến Lê Thánh Tông - TP HCM
Nhằm hướng đến kỳ thi chính thức tốt nghiệp THPT 2022 môn Toán, giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra định kì môn Toán 12 năm học 2021 – 2022 trường THCS – THPT Nguyễn Khuyến & TH – THCS – THPT Lê Thánh Tông, thành phố Hồ Chí Minh; kỳ thi được diễn ra vào ngày 19 tháng 06 năm 2022. Trích dẫn đề kiểm tra Toán 12 năm 2022 trường Nguyễn Khuyến & Lê Thánh Tông – TP HCM : + Cho hàm số f(x) = x4 + bx2 + c (b, c ∈ R) có 3 điểm cực trị x1, x2, x3. Đồ thị hàm số g(x) = mx2 + nx + p (m, n, p ∈ R) đi qua 3 điểm cực trị của đồ thị hàm số y = f(x). Biết diện tích hình phẳng giới hạn bởi hai đồ thị hàm số y = f(x) và y = g(x) bằng 4 15. Giá trị của T = b + c − (m + n + p) là? + Trong không gian hệ tọa độ Oxyz, cho mặt cầu (S) : (x − 1)2 + (y − 1)2 + z2 = a2 và họ mặt phẳng (Pm) : (m2 + 1)x + 2my + 2√2z = 0. Có bao nhiêu giá trị a để khi m thay đổi luôn có duy nhất một mặt cầu cố định có tâm nằm trên mặt cầu (S) và tiếp xúc với mặt phẳng (Pm)? + Cho các số phức z và w thỏa mãn |z| = |w| = 2 và zw + wz + 8 = 0. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của P = z − iw + 3i. Khi đó M − 5m có giá trị bằng bao nhiêu?
Đề khảo sát chất lượng Toán 12 đợt 2 cuối năm 2021 - 2022 sở GDĐT Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 THPT đợt 2 cuối năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Nam Định, nhằm giúp các em rèn luyện để chuẩn bị cho kì thi tốt nghiệp Trung học Phổ thông môn Toán năm 2022; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 06 năm 2022; đề thi có đáp án mã đề Mã đề 911 Mã đề 913 Mã đề 915 Mã đề 917. Trích dẫn đề khảo sát chất lượng Toán 12 đợt 2 cuối năm 2021 – 2022 sở GD&ĐT Nam Định : + Cho hình chóp S.ABCD có đáy là hình thang ABCD vuông tại A và D; AB = 2AD = 2CD; SA vuông góc với đáy; góc giữa SC và đáy bằng 60°. Biết khoảng cách từ B đến (SCD) bằng a42/7, tính thể tích của khối chóp S.ACD. + Trong không gian Oxyz, cho đường thẳng d, mặt phẳng (P): x + y – 2z + 5 = 0 và điểm A(1;-1;2). Đường thẳng A đi qua A cắt đường thẳng d và mặt phẳng (P) lần lượt tại M, N sao cho AM = 2AN, biết rằng A có một vectơ chỉ phương u = (a;b;-1). Khi đó a – b bằng? + Trong không gian Oxyz, cho mặt cầu (S): x2 + (y – 1)2 + (z + 5)2 = 36 và bốn điểm A(1;2;0), B(3;-1;2), C(1;2;2), D(3;-1;1). Gọi M(a;b;c) là điểm nằm trên mặt cầu (S) sao cho biểu thức T = MA2 + 2MB2 – MC2 – 4MD đạt giá trị nhỏ nhất. Tính a + b + c.
Đề khảo sát chất lượng lớp 12 môn Toán năm 2022 sở GDĐT Cần Thơ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh lớp 12 môn Toán năm 2022 sở Giáo dục và Đào tạo thành phố Cần Thơ (mã đề 102); nhằm chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022. Trích dẫn đề khảo sát chất lượng lớp 12 môn Toán năm 2022 sở GD&ĐT Cần Thơ : + Cho H là hình phẳng giới hạn bởi đồ thị hàm số 2 y x x4 4 trục tung và trục hoành. Đường thẳng d đi qua điểm A 0 4 và có hệ số góc k k chia hình H thành hai phần có diện tích bằng nhau. Giá trị của k bằng? + Trong không gian Oxyz cho mặt cầu 2 2 2 S x y z 1 1 4 và hai điểm A 1 2 4 B 0 0 1. Mặt phẳng P ax by cz 3 0 a b c đi qua A, B và cắt S theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Giá trị của a b c bằng? + Một hộp chứa 9 quả cầu gồm 4 quả màu xanh, 3 quả màu đỏ và 2 quả màu vàng. Lấy ngẫu nhiên 3 quả cầu từ hộp đó. Xác suất để trong 3 quả cầu lấy được có ít nhất 1 quả màu đỏ bằng?
Bộ đề tham khảo thi tốt nghiệp THPT 2022 môn Toán sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 bộ đề thi tham khảo kỳ thi tốt nghiệp THPT năm 2022 môn Toán sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; các đề có đáp án và lời giải chi tiết. Trích dẫn bộ đề tham khảo thi tốt nghiệp THPT 2022 môn Toán sở GD&ĐT Hà Tĩnh : + Cho hình trụ tròn xoay có hai đáy là hai hình tròn (O;3) và (O’;3). Biết rằng tồn tại dây cung AB thuộc đường tròn O sao cho O AB là tam giác đều và mặt phẳng (O AB) hợp với đáy chứa đường tròn (O) một góc 60. Tính diện tích xung quanh Sxq của hình nón có đỉnh O đáy là hình tròn (O;3). + Trong không gian với hệ tọa độ Oxyz cho mặt cầu 2 2 2 S x y z 3 8 và hai điểm A B 4 4 3 1 1 1. Gọi C1 là tập hợp các điểm M S sao cho MA MB 2 đạt giá trị nhỏ nhất. Biết rằng C1 là một đường tròn có bán kính 1 R. Tính 1 R. + Trên tập hợp số phức, xét phương trình 2 2 z m z m 2 2 1 4 0 (m là tham số thực). Có tất cả bao nhiêu giá trị của tham số m để phương trình có nghiệm 0 z thỏa mãn 0 z 1?