Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa thi vào 10 môn Toán năm 2020 - 2021 sở GDĐT Thái Nguyên

Thứ Sáu ngày 15 tháng 05 năm 2020, sở Giáo dục và Đào tạo tỉnh Thái Nguyên công bố đề minh họa kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2020 – 2021, nhằm giúp các em học sinh lớp 9 tại tỉnh Thái Nguyên chuẩn bị cho kỳ thi vượt cấp quan trọng sắp tới. Đề minh họa thi vào 10 môn Toán năm 2020 – 2021 sở GD&ĐT Thái Nguyên có dạng tự luận, đề gồm 01 trang với 10 bài toán, thời gian làm bài 120 phút. Trích dẫn đề minh họa thi vào 10 môn Toán năm 2020 – 2021 sở GD&ĐT Thái Nguyên : + Cho đường tròn (O), đường kính AB. Lấy điểm C nằm trên đường tròn (C khác A, C khác B). Các tiếp tuyến của đường tròn (O) tại A và tại C cắt nhau tại D. Gọi H là hình chiếu vuông góc của C trên đường thẳng AB. I là giao điểm của BD và CH. Chứng minh rằng Cl = HI. [ads] + Cho hai đường tròn (O) và (O’) cắt nhau tại hai điểm A và B. Vẽ tiếp tuyến chung CD của hai đường tròn (C thuộc (O), D thuộc (O’)). Lấy hai điểm E, F lần lượt thuộc các đường tròn (O), (O’) sao cho ba điểm E, B, F thẳng hàng (B nằm giữa E và F, E khác B, F khác B) và EF song song với CD. Gọi P, Q lần lượt là giao điểm của các cặp đường thẳng DA với EF và CA với EF. K là giao điểm của hai đường thẳng EC và FD. Chứng minh rằng: a. Tam giác KCD = tam giác BCD. b. KP = KQ. + Người ta đổ thêm 100 g nước vào một dung dịch chứa 20 g muối thì nồng độ của dung dịch giảm đi 10%. Hỏi trước khi đổ thêm nước thì dung dịch chứa bao nhiêu nước?

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán (chung) năm 2021 - 2022 sở GDĐT Bến Tre
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 THPT công lập môn Toán (chung) năm học 2021 – 2022 sở GD&ĐT Bến Tre; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chung) năm 2021 – 2022 sở GD&ĐT Bến Tre : + Cho đường tròn O và điểm M sao cho OM = 6cm. Từ điểm M kẻ hai tiếp tuyến MA và MB đến đường tròn O (A và B là các tiếp điểm). Trên đoạn thẳng OA lấy điểm D (D khác A và O), dựng đường thẳng vuông với OA tại D và cắt MB tại E. a) Chứng minh tứ giác ODEB nội tiếp đường tròn. b) Tứ giác ADEM là hình gì? Vì sao? c) Gọi K là giao điểm của đường thẳng MO và O sao cho điểm O nằm giữa điểm M và điểm K. Chứng minh tứ giác AMBK là hình thoi. + Dựa vào hình bên, hãy: a) Viết ra tọa độ các điểm M và P. b) Xác định hoành độ điểm N. c) Xác định tung độ điểm Q. +  Cho đường thẳng 5 6 2021 d y m x với m là tham số. a) Điểm O(0;0) có thuộc d không? Vì sao? b) Tìm các giá trị của m để d song song với đường thẳng: y x 4 5.
Đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề tuyển sinh lớp 10 chuyên môn Toán (chuyên) năm 2021 trường ĐHSP Hà Nội : + Cho A B là hai điểm cố định nằm trên đường tròn tâm O, bán kính R. Giả sử C là điểm cố định trên tia đối của tia BA. Một cát tuyến thay đổi qua C cắt đường tròn (O) tại D và E (D nằm giữa C E). Các đường tròn ngoại tiếp các tam giác BCD và ACE cắt nhau tại giao điểm thứ hai M. Biết rằng bốn điểm OBME tạo thành tứ giác OBME. Chứng minh rằng: a) Tứ giác OBME nội tiếp. b) 2 2 CD CE CO R. c) M luôn di chuyển trên một đường tròn cố định. + Tìm tất cả các số nguyên dương N sao cho N có thể biểu diễn một cách duy nhất ở dạng 2 1 1 x y xy với x y là hai số nguyên dương. + Cho a, b, c là ba số nguyên dương sao cho mỗi số trong ba số đó đều biểu diễn được dưới dạng lũy thừa của 2 với số mũ tự nhiên. Biết rằng phương trình bậc hai 2 ax bx c 0 (1) có cả hai nghiệm đều là số nguyên. Chứng minh rằng hai nghiệm của phương trình (1) bằng nhau.
Đề tuyển sinh lớp 10 môn Toán năm 2021 - 2022 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán năm học 2021 – 2022 sở GD&ĐT Quảng Bình; kỳ thi được diễn ra vào ngày 08 tháng 06 năm 2021. Trích dẫn đề tuyển sinh lớp 10 môn Toán năm 2021 – 2022 sở GD&ĐT Quảng Bình : + Cho đường tròn O R đường kính AB, dây cung MN vuông góc với AB tại I sao cho AI BI. Trên đoạn thẳng MI lấy điểm H (H khác M và I), tia AH cắt đường tròn O R tại điểm thứ hai là K. Chứng minh rằng: a) Tứ giác BIHK nội tiếp đường tròn. b) AHM đồng dạng với AMK. c) 2 AH AK BI AB R. + Cho phương trình 2 x x m 6 4 0 1 (với m là tham số). a) Giải phương trình (1) khi m = 1. b) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm 1 2 x x thỏa mãn 2020 2021 2014 x x x x 1 2 1 2. + Cho a b là các số thực dương. Chứng minh 1 15 15 4.
Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 - 2022 trường PTNK - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đáp án, lời giải chi tiết và hướng dẫn chấm điểm đề tuyển sinh lớp 10 môn Toán (chuyên) năm học 2021 – 2022 trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Trích dẫn đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2021 – 2022 trường PTNK – TP HCM : + Cho tam giác ABC vuông tại A. Các điểm E, F lần lượt thay đổi trên các cạnh AB, AC sao cho EF // BC. Gọi D là giao điểm của BF với CE và H là hình chiếu vuông góc của D lên EF. Đường tròn (I) đường kính EF cắt BF, CE tương ứng tại M, N (M khác F, N khác E). a) Chứng minh rằng AD và đường tròn ngoại tiếp tam giác HMN cùng đi qua tâm I của đường tròn (I). b) Gọi KL lần lượt là hình chiếu vuông góc của E, F lên BC và P, Q tương ứng là giao điểm của EM, FN với BC. Chứng minh các tứ giác AEPL, AFQK nội tiếp và không đổi khi E, F thay đổi. c) Chứng minh rằng nếu EL và FK cắt nhau trên đường tròn (I) thì EM và FN cắt nhau trên đường thẳng BC. + Cho N tập hợp (N > 6), mỗi tập hợp gồm 5 chữ cái khác nhau được lấy từ 26 chữ cái a, b, c, …, x, y, z. a) Biết rằng trong N tập hợp đã cho, hai tập hợp bất kỳ có chung đúng một chữ cái và không có chữ cái nào có mặt trong tất cả N tập hợp này. Chứng minh rằng không có chữ cái nào có mặt trong 6 tập hợp từ N tập hợp đã cho. b) Biết rằng trong số N tập hợp đã cho, hai tập hợp bất kỳ có chung đúng hai chữ cái và không có hai chữ cái nào cũng có mặt trong tất cả N tập hợp này. Hỏi trong số N tập hợp đã cho, có nhiều nhất là bao nhiêu tập hợp có chung đúng hai chữ cái?