Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tập hợp các số tự nhiên, cách ghi số tự nhiên

Tài liệu gồm 17 trang, trình bày lý thuyết trọng tâm, các dạng toán và bài tập chuyên đề tập hợp các số tự nhiên, cách ghi số tự nhiên, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình học tập chương trình Toán 6 phần Số học chương 1: Ôn tập và bổ túc về số tự nhiên. Mục tiêu : Kiến thức: + Củng cố khái niệm tập hợp số tự nhiên và quan hệ thứ tự trong tập hợp số tự nhiên. + Hiểu được thứ tự trong tập số tự nhiên. + Phân biệt được các tập hợp N và N*. + Hiểu được thế nào là một hệ thập phân, phân biệt được số và chữ số trong hệ thập phân. Kĩ năng: + Biết đọc, viết các số tự nhiên và các số La Mã. + So sánh và sắp xếp được các số tự nhiên theo thứ tự tăng dần hoặc giảm dần. + Biết biểu diễn một số tự nhiên trên tia số và biểu diễn tập hợp các số tự nhiên thỏa mãn điều kiện cho trước. + Biết viết số tự nhiên liền sau, liền trước của một số tự nhiên. + Sử dụng đúng các kí hiệu. I. LÍ THUYẾT TRỌNG TÂM II. CÁC DẠNG BÀI TẬP Dạng 1 : Biểu diễn tập hợp các số tự nhiên thỏa mãn điều kiện cho trước. Dạng 2 : Số liền trước, số liền sau và các số tự nhiên liên tiếp. Để tìm số liền sau của số tự nhiên a, ta tính a + 1. Để tìm số liền trước của số tự nhiên a, ta tính a  – 1. Chú ý: Mỗi số tự nhiên khác 0 có duy nhất một số liền kề trước và một số liền kề sau. Số 0 không có số liền trước. Hai số tự nhiên liên tiếp kém nhau một đơn vị. Dạng 3 : Ghi số tự nhiên. Ghi số tự nhiên: + Để ghi số tự nhiên cần phân biệt rõ: số với chữ số, số chục với chữ số hàng chục, số trăm với chữ số hàng trăm …. + Số 0 không thể đứng ở vị trí đầu tiên. + Số nhỏ nhất có n chữ số là 10…0 (gồm n – 1 chữ số 0). + Số lớn nhất có n chữ số là 99…9 (gồm n chữ số 9). Viết tất cả các số có n chữ số từ các chữ số cho trước: Giả sử từ ba chữ số a, b, c khác 0 viết các số cho ba chữ số khác nhau: + Chọn a làm hàng trăm, ta được: abc, acb. + Tương tự chọn b, c làm hàng trăm. Đọc và viết các số La Mã: Sử dụng các quy ước ghi số trong hệ La Mã. Dạng 4 : Đếm số. Công thức đếm số số hạng của một dãy số cách đều: (Số cuối – số đầu) : Khoảng cách + 1.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm bảng thống kê và biểu đồ tranh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề bảng thống kê và biểu đồ tranh, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Bảng thống kê: Phân tích dữ liệu từ bảng thống kê, biểu diễn dữ liệu bằng biểu đồ tranh. 2. Biểu đồ tranh: Phân tích dữ liệu từ biểu đồ tranh, so sánh, nhận xét, lập trong bảng thống kê. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm số đo góc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề số đo góc, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Số đo góc. a) Số đo của một góc. Mỗi góc có một số đo góc (đơn vị là độ). Hai tia trùng nhau được coi là góc có số đo bằng 0. Cách đo góc: + Bước 1: Đặt thước đo góc sao cho tâm của thước trùng với đỉnh của góc và một cạnh của góc đi qua vạch số 0 trên thước. + Bước 2: Xem cạnh thứ hai của góc đi qua vạch nào của thước thì đó chính là số đo của góc. Lưu ý: Trên thước có hai hàng số ứng với cung lớn và cung nhỏ. Khi đọc kết quả cần đọc số nằm trên cùng một cung với số 0 mà cạnh thứ nhất đi qua. Nếu hai góc A và B có số đo bằng nhau, ta nói hai góc đó bằng nhau. Ta viết A B. Nếu số đo của góc A nhỏ hơn số đo của góc B thì ta nói góc A nhỏ hơn góc B. Ta viết A B. b) Các loại góc: Góc nhọn Góc vuông Góc tù Góc bẹt. 2. Các dạng toán thường gặp. Dạng 1: Đo góc. Dạng 2: So sánh hai góc. Phương pháp: + Đo các góc cần so sánh. + So sánh số đo của các góc và kết luận của bài toán. Dạng 3: Nhận biết góc vuông, góc nhọn, góc tù, góc bẹt. Phương pháp: Dựa vào số đo của góc để kết luận. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề góc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề góc, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Góc. 1.1. Định nghĩa. Góc là hình gồm hai tia chung gốc. Gốc chung của 2 tia là đỉnh của góc. Hai tia là hai cạnh của góc. – Góc xOy, kí hiệu là xOy; yOx AOB; BOA. – Điểm O là đỉnh của góc. Hai tia Ox; Oy là các cạnh của góc. – Đặc biệt, khi Ox; Oy là hai tia đối nhau, ta có góc bẹt xOy. Chú ý khi viết tên góc: Dùng 3 chữ để viết các góc, chữ ở giữa là đỉnh của góc; hai chữ hai bên cùng với chữ ở giữa là tên của hai tia chung gốc tạo thành hai cạnh của góc. Trên ba chữ của tên góc có kí hiệu. 1.2. Vẽ góc. – Vẽ đỉnh và hai cạnh của góc. 1.3. Điểm trong của góc. – Điểm M nằm trong góc xOy thì được gọi là điểm trong của góc xOy. – Điểm N và các điểm nằm trên cạnh của góc xOy không phải là điểm trong của góc xOy. Nâng cao: Công thức tính số góc khi biết n tia chung gốc 2 n n. B. BÀI TẬP TRẮC NGHIỆM 2. Các dạng toán thường gặp. Dạng 1: Nhận biết góc. Phương pháp giải: Để đọc tên và viết kí hiệu góc, ta làm như sau: Bước 1: Xác định đỉnh và 2 cạnh của góc. Bước 2: Kí hiệu góc và đọc tên. Lưu ý: Một góc có thể gọi bằng nhiều cách. Dạng 2: Xác định các điểm trong của góc cho trước. Phương pháp giải: – Điểm M nằm trong góc xOy thì được gọi là điểm trong của góc xOy. – Điểm N và các điểm nằm trên cạnh của góc xOy không phải là điểm trong của góc xOy. Dạng 3: Đếm góc, tính số góc khi biết số tia và ngược lại. Phương pháp giải: Để đếm góc tạo thành từ n tia chung gốc cho trước, ta thường làm theo các cách sau: Cách 1: Vẽ hình và đếm các góc tao bởi tất cả các tia cho trước. Cách 2: Sử dụng công thức tính số góc khi biết n tia.
Tóm tắt lý thuyết và bài tập trắc nghiệm trung điểm của đoạn thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề trung điểm của đoạn thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Trung điểm của đoạn thẳng: Định nghĩa: Trung điểm của đoạn thẳng là điểm nằm giữa hai đầu mút của đoạn thẳng và cách đều hai đầu mút đó. Chú ý: Điểm I là trung điểm của đoạn thẳng AB. + Điểm I nằm giữa hai điểm A và B và IA IB. + Hoặc IA IB AB IA IB. + Hoặc 1 2 IA IB AB. 2. Các dạng toán thường gặp. Dạng 1: Tính độ dài đoạn thẳng. Phương pháp: Ta sử dụng: Nếu M là trung điểm của đoạn thẳng AB thì 1 2 MA MB AB. Dạng 2: Chứng tỏ một điểm là trung điểm của đoạn thẳng. Phương pháp: Để chứng tỏ điểm I là trung điểm của đoạn thẳng AB ta có 3 cách. B. BÀI TẬP TRẮC NGHIỆM