Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu học tập môn Toán 9 tập 1 - Trần Công Dũng

Tài liệu gồm 59 trang, được biên soạn bởi thầy giáo Trần Công Dũng, bao gồm tóm tắt lý thuyết, phương pháp giải toán và bài tập luyện tập môn Toán 9 tập 1, theo định hướng đề thi của sở Giáo dục và Đào tạo thành phố Hồ Chí Minh. MỤC LỤC : Chương 1 Căn bậc hai, căn bậc ba 3. A Căn bậc hai 3. I Tóm tắt lý thuyết 3. II Phương pháp giải toán 3. B Căn thức bậc hai và hằng đẳng thức √A2 = |A| 5. I Tóm tắt lí thuyết 5. II Phương pháp giải toán 5. + Dạng 1. Điều kiện để √A có nghĩa 5. + Dạng 2. Sử dụng hằng đẳng thức √A2 = |A| 5. + Dạng 3. Giải phương trình 6. III Bài tập tự luyện và nâng cao 6. C Liên hệ giữa phép nhân, phép chia và phép khai phương 8. I Tóm tắt lí thuyết 8. II Các dạng toán 8. III Bài tập tự luyện và nâng cao 9. D Biến đổi đơn giản và rút gọn biểu thức chứa căn bậc hai 10. I Tóm tắt lí thuyết 10. II Các dạng toán 10. + Dạng 1. Đưa thừa số ra ngoài dấu căn, đưa thừa số vào bên trong dấu căn 10. + Dạng 2. Khử mẫu của biểu thức dưới dấu căn – Phép nhân liên hợp 11. III Bài tập rèn luyện 12. E Bài tập ôn chương 1 15. + Dạng 1. Rút gọn biểu thức số 15. + Dạng 2. Giải phương trình chứa căn thức đơn giản 16. + Dạng 3. Rút gọn biểu thức chứa căn thức 17. Chương 2 HÀM SỐ BẬC NHẤT 21. A Nhắc lại và bổ sung khái niệm về hàm số 21. I Tóm tắt lí thuyết 21. II Các dạng toán 21. + Dạng 1. Tìm giá trị của hàm số, biến số 21. + Dạng 2. Toán thực tế về hàm số 22. B Hàm số bậc nhất 24. I Tóm tắt lý thuyết 24. II Phương pháp giải toán 24. III Bài tập luyện tập 25. C Tương giao hai đường thẳng 27. I Tóm tắt lí thuyết 27. II Phương pháp giải toán 27. III Bài tập luyện tập 28. D Hệ số góc của đường thẳng 29. I Tóm tắt lí thuyết 29. II Phương pháp giải toán 29. + Dạng 1. Hệ số góc của đường thẳng 30. + Dạng 2. Lập phương trình đường thẳng biết hệ số góc 30. III Bài tập tự luyện 31. E Bài tập ôn chương 2 31. Chương 1 HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG 37. A Một số hệ thức về cạnh và đường cao của tam giác vuông 37. I Tóm tắt lí thuyết 37. II Phương pháp giải toán 37. + Dạng 1. Giải các bài toán định lượng 38. + Dạng 2. Giải các bài toán định tính 38. III Bài tập tự luyện 39. B Tỉ số lượng giác 41. I Tóm tắt lí thuyết 41. II Phương pháp giải toán 41. III Bài tập tự luyện 41. C Ứng dụng thực tế hệ thức lượng trong tam giác vuông 43. Chương 2 ĐƯỜNG TRÒN 49. A Sự xác định đường tròn 49. I Tóm tắt lí thuyết 49. B Đường kính và dây của đường tròn 50. C Liên hệ giữa dây và khoảng cách từ tâm đến dây 50. I Bài tập rèn luyện 50. D Vị trí tương đối giữa đường thẳng và đường tròn – Dấu hiệu nhận biết đường tròn 52. I Tóm tắt lí thuyết 52.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề liên hệ giữa cung và dây
Tài liệu gồm 12 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề liên hệ giữa cung và dây, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 2. I. TÓM TẮT LÝ THUYẾT 1. Định lí 1 Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau: a) Hai cung bằng nhau căng hai dây bằng nhau. b) Hai dây bằng nhau căng hai cung bằng nhau. 2. Định lí 2 Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau: a) Cung lớn hơn căng dây lớn hơn. b) Dây lớn hơn căng cung lớn hơn. 3. Bổ sung a) Trong một đường tròn, hai cung bị chắn giữa hai dây song song thì bằng nhau. b) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì đi qua trung điểm của dây căng cung ấy. Trong một đường tròn, đường kính đi qua trung điểm của một dây (không đi qua tâm) thì đi qua điểm chính giữa của cung bị căng bởi dây ấy. c) Trong một đường tròn, đường kính đi qua điểm chính giữa của một cung thì vuông góc với dây căng cung ấy và ngược lại. II. BÀI TẬP MINH HỌA Phương pháp giải: Để giải các bài toán liên quan đến cung và dây, cần nắm chắc định nghĩa góc ở tâm và kết hợp với sự liên hệ giữa cung và dây. III. BÀI TẬP TỰ LUYỆN
Chuyên đề góc ở tâm, số đo cung
Tài liệu gồm 09 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề góc ở tâm, số đo cung, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 3 bài số 1. I. TÓM TẮT LÝ THUYẾT 1. Góc ở tâm. 2. Số đo cung. 3. So sánh hai cung. 4. Định lí. II. BÀI TẬP MINH HỌA Phương pháp giải: Để tính số đo của góc ở tâm, số đo của cung bị chắn, ta sử dụng các kiến thức sau: + Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó. + Số đo của cung lớn bằng hiệu giữa 360 độ và số đo của cung nhỏ (có chung hai đầu mút với cung lớn). + Số đo của nửa đường tròn bằng 180 độ. + Cung cả đường tròn có số đo 360 độ. + Sử dụng tỉ số lượng giác của một góc nhọn để tính góc. + Sử dụng quan hệ đường kính và dây cung. III. PHIẾU BÀI TỰ LUYỆN
Chuyên đề vị trí tương đối của hai đường tròn
Tài liệu gồm 36 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề vị trí tương đối của hai đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 7 và bài số 8. A. KIẾN THỨC TRỌNG TÂM 1. Tính chất của đường nối tâm. Đường nối tâm (đường thẳng đi qua tâm hai đường tròn) là trục đối xứng của hình tạo bởi hai đường tròn. Chú ý: + Nếu hai đường tròn tiếp xúc nhau thì tiếp điểm nằm trên đường nối tâm. + Nếu hai đường tròn cắt nhau thì đường nối tâm là đường trung trực của dây chung. 2. Liên hệ giữa vị trí của hai đường tròn với đoạn nối tâm d và các bán kính R và r. + Hai đường tròn cắt nhau. + Hai đường tròn tiếp xúc nhau: Tiếp xúc ngoài; Tiếp xúc trong. + Hai đường tròn không giao nhau: Ở ngoài nhau; (O) đựng (O’); (O) và (O’) đồng tâm. B. CÁC DẠNG BÀI MINH HỌA Dạng 1 : Nhận biết vị trí tương đối của hai đường tròn. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn. Dạng 2 : Bài tập về hai đường tròn cắt nhau. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn cắt nhau. Dạng 3 : Bài tập về hai đường tròn tiếp xúc. Phương pháp giải: Áp dụng các kiến thức về vị trí tương đối của hai đường tròn liên quan đến trường hợp hai đường tròn không cắt nhau. C. TRẮC NGHIỆM RÈN PHẢN XẠ D. BÀI TẬP TỰ LUYỆN
Chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn
Tài liệu gồm 28 trang, được biên soạn bởi tác giả Toán Học Sơ Đồ, tổng hợp kiến thức trọng tâm, phân dạng và hướng dẫn giải các dạng bài tập tự luận & trắc nghiệm chuyên đề dấu hiệu nhận biết tiếp tuyến của đường tròn, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 9 chương 2 bài số 5. A. TÓM TẮT LÝ THUYẾT Dấu hiệu 1. Nếu một đường thẳng đi qua một điểm của đường tròn và vuông góc với bán kính đi qua điểm đó thì đường thẳng âỳ là một tiếp tuyến của đường tròn. Dấu hiệu 2. Theo định nghĩa tiếp tuyến. B. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1 . Chứng minh một đường thẳng là tiếp tuyến của một đường tròn. Phương pháp giải: Để chứng minh đường thẳng a là tiếp tuyến của đường tròn (O;R) tại tiếp điểm C, ta có thể làm theo một trong các cách sau: + Cách 1. Chứng minh C nằm trên (O) và OC vuông góc với a tại C. + Cách 2. Kẻ OH vuông góc a tại H và chứng minh OH = OC = R. + Cách 3. Vẽ tiếp tuyến a’ của (O) và chứng minh a và a’ trùng nhau. Dạng 2 . Tính độ dài. Phương pháp giải: Nối tâm với tiếp điểm để vận dụng định lý về tính chất của tiếp tuyến và sử dụng các công thức về hệ thức lượng trong tam giác vuông để tính độ dài các đoạn thẳng. Dạng 3 . Bài toán tổng hợp. C. TRẮC NGHIỆM RÈN PHẢN XẠ