Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2022 2023 trường THCS Cầu Giấy Hà Nội Bản PDF - Nội dung bài viết Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Đề học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 trường THCS Cầu Giấy, Hà Nội Chào quý thầy, cô và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến mọi người đề thi chọn học sinh giỏi môn Toán lớp 9 năm học 2022 – 2023 của trường THCS Cầu Giấy, Hà Nội. Đề thi bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài là 90 phút (không tính thời gian phát đề). Kỳ thi sẽ được tổ chức vào ngày ... tháng 09 năm 2022. Đề học sinh giỏi Toán lớp 9 năm 2022 – 2023 trường THCS Cầu Giấy, Hà Nội có những bài toán đa dạng và thú vị, mời quý vị cùng tham gia giải đề thi nhé. Dưới đây là một số câu hỏi trong đề thi: 1. Tìm giá trị nhỏ nhất và lớn nhất của biểu thức T = 1/(a + 1) + 1/(b + 1) + 1/(c + 1), với a, b, c là các số thực không âm thỏa mãn a + b + c = 3. 2. Trên tam giác nhọn ABC, ta có đường cao AD, BE, CF đồng qui tại H. Chứng minh rằng I là trung điểm của AH và IEM = 90°. 3. Xét tập hợp A gồm các số nguyên dương không vượt quá 100, thỏa mãn điều kiện nếu không phải số nhỏ nhất thì tồn tại a, b, c trong A sao cho x = a + b + c. Chứng minh rằng tất cả các phần tử của tập hợp A đều là số chẵn. Các em hãy thử sức với đề thi này và cố gắng giải đúng nhé! Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề chọn HSG huyện Toán 9 năm 2023 - 2024 phòng GDĐT Tân Sơn - Phú Thọ
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 THCS năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Tân Sơn, tỉnh Phú Thọ; đề thi gồm 03 trang, gồm 16 câu trắc nghiệm (08 điểm) + 04 câu tự luận (12 điểm), thời gian làm bài 150 phút (không kể thời gian giao đề). Trích dẫn Đề chọn HSG huyện Toán 9 năm 2023 – 2024 phòng GD&ĐT Tân Sơn – Phú Thọ : + Cho điểm A di chuyển trên đường tròn tâm O đường kính BC R 2 (A không trùng với B và C). Trên tia AB lấy điểm M sao cho B là trung điểm của AM. Gọi H là hình chiếu vuông góc của A lên BC và I là trung điểm của HC. Chứng minh: a) Tam giác AHM và tam giác CIA đồng dạng. b) MH vuông góc với AI. c) M chuyển động trên một đường tròn cố định. + Cho đường tròn O R đường kính AB. Đường thẳng d tiếp xúc với đường tròn tại A và M là điểm di động trên đường thẳng d M A. Đường thẳng qua O vuông góc với BM cắt đường thẳng d tại N. Giá trị nhỏ nhất của MN bằng? + Một đồng hồ có kim giờ dài 4cm và kim phút dài 6cm. Lúc 16 giờ đúng khoảng cách giữa hai đầu kim là?
Đề khảo sát HSG Toán 9 lần 2 năm 2023 - 2024 phòng GDĐT Tam Kỳ - Quảng Nam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát học sinh giỏi môn Toán 9 lần 2 năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Tam Kỳ, tỉnh Quảng Nam; kỳ thi được diễn ra vào ngày 02 tháng 11 năm 2023.
Đề học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Hoàng Mai - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp thị xã môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND thị xã Hoàng Mai, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Hoàng Mai – Nghệ An : + Tìm số nguyên n sao cho C = n2 – 3n + 4 là số chính phương. b) Cho các số nguyên a, b, c thỏa mãn a + b + c = 2023. Chứng minh rằng a3 + b3 + c3 – 1 chia hết cho 6. + Cho tam giác ABC vuông tại A, Gọi D, E lần lượt là trung điểm của BC, AC. Đường thẳng qua C vuông góc với BC cắt DE tại F, H là hình chiếu của C lên BF. a) Chứng minh FH.FB = FE.FD. b) Chứng minh tam giác ABH đồng dạng với tam giác ECH. c) Gọi I là trung điểm của FE. Chứng minh A, H, I thẳng hàng. + Cho các số dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức P = 2 25 2 9 a ab b a c.
Đề chọn học sinh giỏi Toán 9 năm 2023 - 2024 phòng GDĐT Vân Canh - Bình Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2023 – 2024 phòng Giáo dục và Đào tạo UBND huyện Vân Canh, tỉnh Bình Định; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2023; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề chọn học sinh giỏi Toán 9 năm 2023 – 2024 phòng GD&ĐT Vân Canh – Bình Định : + Cho ∆ABC có đường phân giác trong AD. Trên tia đối của tia DA lấy điểm E sao cho ECD BAD. a. Chứng minh AD.DE = BD.CD. b. Chứng minh 2 AD AB.AC BD.CD. + Cho tam giác ABC nhọn và một điểm P thuộc miền trong tam giác. Gọi DEF theo thứ tự là hình chiếu của P trên các cạnh BC CA AB. a. Chứng minh 2 2 2 22 2 BD CE AF DC EA FB. b. Xác định vị trí điểm P trong ∆ABC để tổng 22 2 DC EA FB đạt giá trị nhỏ nhất. + Tìm hệ số a để đa thức f(x) = x3 – 8×2 + ax – 5 chia hết cho đa thức g(x) = x2 – 3x + 1.