Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển Toán 7 năm 2022 - 2023 hệ thống GD Archimedes School - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn đội tuyển học sinh giỏi môn Toán 7 năm học 2022 – 2023 hệ thống giáo dục Archimedes School, thành phố Hà Nội; đề thi gồm 01 trang với 07 bài toán dạng tự luận, thời gian học sinh làm bài thi là 135 phút. Trích dẫn đề chọn đội tuyển Toán 7 năm 2022 – 2023 hệ thống GD Archimedes School – Hà Nội : + Có 64 học sinh đứng trên một lưới ô vuông kích thước 8 x 8, mỗi ô vuông có đúng một học sinh đứng trên đó và toàn bộ 64 học sinh đều có chiều cao khác nhau. Biết rằng An là người cao nhất trong những người thấp nhất ở mỗi hàng và Bình là người thấp nhất trong những người cao nhất ở mỗi cột, hãy so sánh chiều cao của An và Bình. + Với mỗi số nguyên dương n, ký hiệu v(n) là số nguyên tố lớn nhất không vượt quá n và l(n) là số nguyên tố nhỏ nhất lớn hơn n. Tính giá trị của biểu thức S. + Thầy Cẩn muốn viết các số 1, 2, …, 8 vào các đỉnh của một khối lập phương, mỗi đỉnh một số sao cho tổng hai số được viết trên hai đầu mút của mỗi cạnh là đôi một khác nhau. Hỏi thầy Cẩn có thể viết số được như mong muốn hay không?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát HSG Toán 7 năm 2017 - 2018 phòng GDĐT thành phố Kon Tum
Đề khảo sát HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Kon Tum có đáp án + lời giải chi tiết + hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 03 tháng 04 năm 2017. Trích dẫn đề khảo sát HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT thành phố Kon Tum : + Cho tam giác ABC vuông tại A. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm BE và CD. Chứng minh rằng: a) BE = CD. b) BDE là tam giác cân. c) EIC 60 và IA là tia phân giác của DIE. + Tìm số hữu tỉ x, sao cho tổng của số đó với nghịch đảo của nó có giá trị là một số nguyên. + Cho các số a, b, c không âm thỏa mãn: a + 3c = 2016; a + 2b = 2017. Tìm giá trị lớn nhất của biểu thức P = a + b + c.
Đề giao lưu HSG Toán 7 năm 2017 - 2018 phòng GDĐT Vĩnh Bảo - Hải Phòng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Vĩnh Bảo – Hải Phòng; đề thi có đáp án + lời giải chi tiết + bảng hướng dẫn chấm điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 phòng GD&ĐT Vĩnh Bảo – Hải Phòng : + Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (M khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh: ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của đoạn thẳng DK. + Cho tam giác ABC (AB < AC, B = 60). Hai tia phân giác AD (D BC) và CE (E AB) của ABC cắt nhau ở I. Chứng minh IDE cân. + Cho hai đa thức: f(x) và g(x). Xác định hệ số a;bcủa đa thức g(x) biết nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x).
Đề khảo sát HSG Toán 7 năm 2017 - 2018 trường THCS Vũ Phạm Khải - Ninh Bình
Đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình có đáp án và lời giải chi tiết, kỳ thi được diễn ra vào ngày 12 tháng 03 năm 2018. Trích dẫn đề khảo sát HSG Toán 7 năm 2017 – 2018 trường THCS Vũ Phạm Khải – Ninh Bình : + Nhà trường dự định chia vở viết cho 3 lớp 7A, 7B, 7C theo tỉ lệ số học sinh là 7:6:5. Nhưng sau đó vì có học sinh thuyển chuyển giữa 3 lớp nên phải chia lại theo tỉ lệ 6:5:4. Như vậy có lớp đã nhận được ít hơn theo dự định 12 quyển vở. Tính số vở mỗi lớp nhận được. + Gọi f là một hàm xác định trên tập hợp các số nguyên và thỏa mãn ba điều kiện sau: f(0) ≠0; f(1)=3; f(x)f(y)=f(x+y)+f(x-y) với mọi x, y. Tính giá trị của f(7). + Ba phân số có tổng bằng 213 70, các tử của chúng tỉ lệ với 3; 4; 5, các mẫu của chúng tỉ lệ với 5; 1; 2. Tìm ba phân số đó.
Đề giao lưu HSG Toán 7 năm 2017 - 2018 trường THCS Nguyễn Chích - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề giao lưu HSG Toán 7 năm 2017 – 2018 trường THCS Nguyễn Chích – Thanh Hóa; đề thi có đáp án + lời giải + thang điểm. Trích dẫn đề giao lưu HSG Toán 7 năm 2017 – 2018 trường THCS Nguyễn Chích – Thanh Hóa : + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH BC H BC. Biết HBE = 50o; MEB = 25o. Tính HEM và BME. + Tìm hai số nguyên dương x và y biết rằng tổng, hiệu và tích của chúng lần lượt tỉ lệ nghịch với 35; 210;12. + Tính giá trị biểu thức A.