Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề ôn thi THPT Quốc gia 2019 môn Toán - Lư Sĩ Pháp (Tập 1)

giới thiệu đến các em tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán (Tập 1) do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 158 trang tổng hợp các dạng toán và bài tập các chuyên đề thuộc chương trình Giải tích 12. Chuyên đề 1 . Ứng dụng của đạo hàm – Khảo sát và vẽ đồ thị hàm số – Bài toán liên quan (Trang 01 – 39) + Dạng 1. Tìm các khoảng đồng biến, nghịch biến của hàm số đã cho. + Dạng 2. Tìm tham số m thuộc R để hàm số luôn luôn đồng biến hay nghịch biến trên tập xác định của nó. + Dạng 3. Tìm tham số m thuộc R để hàm số luôn luôn đồng biến hay nghịch biến trên khoảng (a;b). + Dạng 4. Tìm các điểm cực trị của hàm số y = f(x). + Dạng 5. Tìm tham số m để hàm số đạt cực đại hay cực tiểu tại điểm x0. + Dạng 6. Tìm tham số m để hàm số không có hoặc có cực trị và thỏa mãn điều kiện bài toán. + Dạng 7. Tìm GTLN – GTNN của hàm số trên đoạn [a;b]. Xét hàm số y = f(x). + Dạng 8. Tìm GTLN – GTNN của hàm số chứa căn thức. + Dạng 9. Tìm GTLN – GTNN của hàm số trên một khoảng (a;b). + Dạng 10. Ứng dụng vào bài toán thực tế. + Dạng 11. Tìm các đường tiệm cận thông qua định nghĩa; bảng biến thiên. + Dạng 12. Tìm các đường tiệm cận của hàm số nhất biến. + Dạng 13. Tìm các đường tiệm đứng của hàm số khác. + Dạng 14. Khảo sát sự biến thiên và vẽ đồ thị hàm số. + Dạng 15. Biện luận số giao điểm của hai đồ thị. + Dạng 16. Biện luận số nghiệm của phương trình bằng đồ thị. + Dạng 17. Viết phương trình tiếp tuyến. + Dạng 18. Sự tiếp xúc của các đường cong. [ads] Chuyên đề 2 . Lũy thừa – Mũ – Lôgarit. Phương trình, bất phương trình Mũ – Lôgarit và các bài toán ứng dụng thực tế (Trang 40 – 77) + Dạng 1. Xét tính đúng sai của một mệnh đề. + Dạng 2. Tính (rút gọn) biểu thức mũ và lôgarit. + Dạng 3. Biểu diễn một lôgarit qua các yếu tố cho trước. + Dạng 4. So sánh các biểu thức chứa mũ và lôgarit. + Dạng 5. Tập xác định của hàm số. + Dạng 6. Tính đạo hàm. + Dạng 7. Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số. + Dạng 8. Giải phương trình, bất phương trình, hệ phương trình. + Dạng 9. Nhận dạng đồ thị, xác định các hệ số. + Dạng 10. Bài toán thực tế. Chuyên đề 3 . Nguyên hàm – Tích phân – Ứng dụng của tích phân trong hình học (Trang 78 – 124) + Dạng 1. Nguyên hàm và các phương pháp tìm nguyên hàm. + Dạng 2. Tích phân và các phương pháp tính tích phân. + Dạng 3. Ứng dụng của tích phân trong hình học. Chuyên đề 4 . Số phức (Trang 125 – 154) + Dạng 1. Số phức và các phép toán trên số phức. + Dạng 2. Phương trình bậc hai. + Dạng 3. Cực trị số phức. + Dạng 4. Một số dạng cơ bản tìm giá trị lớn nhất, giá trị nhỏ nhất của |z|. Ở mỗi chuyên đề, nội dung tài liệu được chia thành 2 phần: + Phần 1 . Phần lý thuyết: Ở phần này thầy Lư Sĩ Pháp trình bày đầy đủ lý thuyết cần nắm cho mỗi chuyên đề và các dạng toán cần nắm. + Phần 2 . Phần trắc nghiệm: Bài tập trắc nghiệm có đáp án theo các chuyên đề, đa dạng, phong phú và bám sát cấu trúc đề thi THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo. Nội dung của cuốn tài liệu chuyên đề ôn thi THPT Quốc gia 2019 môn Toán – Lư Sĩ Pháp (Tập 1) bám sát chương trình chuẩn và chương trình nâng cao môn Giải tích 12 đã được Bộ Giáo dục và Đào tạo quy định.

Nguồn: toanmath.com

Đọc Sách

Phương pháp chọn đại diện giải toán trắc nghiệm - Trần Tuấn Anh
Tài liệu gồm 36 trang, được biên soạn bởi thầy giáo Trần Tuấn Anh, hướng dẫn phương pháp chọn đại diện để giải các bài toán trắc nghiệm trong chương trình Toán 12, giúp học sinh ôn thi THPT Quốc gia môn Toán. Các bài toán trong tài liệu được chọn lọc từ các đề thi thử THPT Quốc gia môn Toán, được giải bằng hai cách: cách thông thường và cách chọn đại diện, nhằm giúp bạn đọc thấy được ưu điểm của phương pháp chọn đại diện trong giải toán. Khái quát nội dung tài liệu phương pháp chọn đại diện giải toán trắc nghiệm – Trần Tuấn Anh: Việc tìm ra đáp án đúng cho bài toán trắc nghiệm là rất khác so với việc trình bày bài giải tự luận. Giải quyết bài toán tự luận, chúng ta phải trình bày lời giải bài toán theo suy luận của mình, sao cho người đọc hiểu đúng, dựa trên nền tảng kiến thức chuẩn mực. Với bài thi toán trắc nghiệm, học sinh không cần trình bày lời giải và có nhiều cách tiếp cận. Không cần xét mọi trường hợp, có thể một vài trường hợp cũng đủ chọn được đáp án vì loại được các khả năng khác. Các suy luận không cần diễn giải, viết ra, chỉ viết ý chính để tìm ra đáp án khi nháp. [ads] Nếu bài toán đúng với mọi giá trị x thuộc K thì nó sẽ đúng với một giá trị xác định x0 thuộc K. 1. Một số bài toán về hàm số. 2. Một số bài toán về hàm số lũy thừa, hàm số mũ và hàm số lôgarit. 3. Một số bài toán về nguyên hàm và tích phân. 4. Một số bài toán về số phức. 5. Một số bài toán hình học không gian. 6. Một số bài toán hình học giải tích. 7. Một số bài toán khác.
Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu, một chủ đề rất quan trọng trong chương trình Toán THPT. Bên cạnh tài liệu bài toán tối ưu dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán tối ưu: A. BÀI TẬP TRẮC NGHIỆM B. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế
Sau một khoảng thời gian nghỉ học kéo dài do ảnh hưởng của tình hình dịch bệnh, thì hiện tại, nhiều trường THPT trên toàn quốc đã bắt đầu cho học sinh đi học trở lại. Đây là thời điểm các em học sinh lớp 12 cần ôn tập lại kiến thức để chuẩn bị cho kỳ thi THPT Quốc gia và kỳ thi tuyển sinh vào các trường Cao đẳng – Đại học năm học 2019 – 2020. giới thiệu đến các em tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế, một chủ đề rất quan trọng trong chương trình Toán THPT. Bên cạnh tài liệu bài toán thực tế dạng PDF dành cho học sinh, còn chia sẻ tài liệu WORD (.doc / .docx) nhằm hỗ trợ quý thầy, cô giáo trong công tác giảng dạy. Khái quát nội dung tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm bài toán thực tế: A. KIẾN THỨC CƠ BẢN I. Các dạng toán về lãi suất ngân hàng + Lãi đơn là gì và công thức tính lãi đơn. + Lãi kép là gì và công thức tính lãi kép. + Lãi kép liên tục là gì và công thức tính lãi kép liên tục. + Công thức tính tiền gửi hàng tháng. + Công thức tính tiền gửi ngân hàng và rút tiền gửi hàng tháng. + Công thức tính tiền vay vốn trả góp. + Công thức tính tăng lương. II. Bài toán tăng trưởng dân số B. BÀI TẬP TRẮC NGHIỆM C. ĐÁP ÁN VÀ HƯỚNG DẪN GIẢI BÀI TẬP TRẮC NGHIỆM
Phương pháp hàm số đặc trưng - Nguyễn Văn Rin
Tài liệu gồm 43 trang được tổng hợp và biên soạn bởi thầy giáo Nguyễn Văn Rin, trình bày cơ sở lý thuyết và giới thiệu một số ví dụ áp dụng của phương pháp hàm số đặc trưng trong các đề thi thử THPT Quốc Gia môn Toán cũng như đề chính thức của Bộ Giáo dục và Đào tạo qua các năm. Phương pháp hàm số đặc trưng thường xuyên xuất hiện trong đề thi THPT Quốc Gia môn Toán và nó cũng là một trong những câu phân loại học sinh khá – giỏi của đề thi, ví dụ như: Câu 47 mã đề 101 – THPT QG năm 2017; Câu 35 đề tham khảo – BGD&ĐT năm 2018; Câu 46 mã đề 101 – THPT QG năm 2018; Câu 47 đề tham khảo – BGD&ĐT năm 2020. Khái quát nội dung tài liệu phương pháp hàm số đặc trưng – Nguyễn Văn Rin: I. Cơ sở lý thuyết : Cho hàm số y = f(x) liên tục trên tập D. + Nếu hàm số f(x) đơn điệu (đồng biến hoặc nghịch biến) trên D thì với mọi u, v thuộc D ta có: f(u) = f(v) khi và chỉ khi u = v. + Nếu hàm số f(x) đồng biến trên D thì với mọi u, v thuộc D ta có: f(u) < f(v) khi và chỉ khi u < v. + Nếu hàm số f(x) nghịch biến trên D thì với mọi u, v thuộc D ta có: f(u) < f(v) khi và chỉ khi u > v. [ads] II. Áp dụng + Dạng 1. Giải phương trình, bất phương trình mũ và logarit. + Dạng 2. Tìm điều kiện để phương trình, bất phương trình có nghiệm. + Dạng 3. Tìm GTLN và GTNN của hàm số. + Dạng 4. Tìm nghiệm nguyên của phương trình. + Dạng 5. Tính tích phân.