Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề quan hệ chia hết trên tập hợp số

Tài liệu gồm 56 trang được biên soạn bởi tác giả Trịnh Bình giới thiệu phương pháp giải và bài tập các dạng toán về quan hệ chia hết trên tập hợp số, tài liệu phù hợp với học sinh lớp 6 muốn tìm hiểu chuyên sâu và ôn thi học sinh giỏi môn Toán bậc Trung học Cơ sở. Các dạng toán được đề cập trong tài liệu chuyên đề quan hệ chia hết trên tập hợp số: Dạng toán 1 : Chứng minh tích các số nguyên liên tiếp chia hết cho một số cho trước. Đây là dạng toán cơ bản thường gặp khi chúng ta mới bắt đầu học chứng minh các bài toán chia hết. Sử dụng các tính chất cơ bản như: tích hai số nguyên liên tiếp chia hết cho 2, tích của ba số nguyên liên tiếp chia hết cho 6. Chúng ta vận dụng linh hoạt các tích chất cơ bản này để giải các bài toán chứng  minh chia hết về tích các số nguyên liên tiếp. Dạng toán 2 : Phân tích thành nhân tử. Để chứng minh A(x) chia hết cho p ta phân thích A(x) = D(x).p, còn nếu không thể đưa ra phân tích như vậy ta có thể viết p = kq. + Nếu (k;q) = 1, ta chứng minh A(x) chia hết cho k và q. + Nếu (k;q) khác 1, ta viết A(x) = B(x).C(x) rồi chứng minh B(x) chia hết cho k và C(x) chia hết cho q. Dạng toán 3 : Sử dụng phương pháp tách tổng. Để chứng minh A(x) chia hết cho p ta biết đổi A(x) thành tổng các hạng tử rồi chứng minh mỗi hạng tử chia hết cho p. Dạng toán 4 : Sử dụng hằng đẳng thức. [ads] Dạng toán 5 : Sử dụng phương pháp xét số dư. Để chứng minh A(n) chia hết cho p ta xét số n có dạng n = kp + r với r thuộc {0; 1; 2 … p – 1}. Dạng toán 6 : Sử dụng phương pháp phản chứng. Để chứng minh A(x) không chia hết cho n, ta giả sử A(x) chia hết cho n sau đó dùng lập luận để chỉ ra mâu thuẩn để chỉ ra điều giả sử là sai. Dạng toán 7 : Sử dụng phương pháp quy nạp. Để kiểm tra mệnh đề đúng với mọi số tự nhiên n ≥ p ta làm như sau: + Kiểm tra mệnh đề đúng với n = p. + Giả sử mệnh đề đúng mới n = k chứng minh mệnh đề đúng với n = k + 1. Dạng toán 8 : Sử dụng nguyên lý Dirichlet. Áp dụng nguyên lý Dirichle vào bài toán chia hết như sau: “Trong m = kn + 1 số có ít nhất n + 1 số chia hết cho k có cùng số dư”. Dạng toán 9 : Xét đồng dư. Sử dụng định nghĩa và các tính chất của đồng dư thức để giải bài toán chia hết. Dạng toán 10 : Sử dụng tính chất chia hết và áp dụng định lý Fermat nhỏ. Sử dụng tính chất chia hết và áp dụng định lý Fermat nhỏ để giải toán. Dạng toán 11 : Các bài toán quan hệ chia hết với đa thức. Dạng toán 12 : Tìm điều kiện biến để chia hết.

Nguồn: toanmath.com

Đọc Sách

Ứng dụng đồng dư thức trong giải toán số học
Nội dung Ứng dụng đồng dư thức trong giải toán số học Bản PDF - Nội dung bài viết Đồng dư thức trong giải toán số học Đồng dư thức trong giải toán số học Ứng dụng đồng dư thức trong giải toán số học là một công cụ mạnh mẽ giúp học sinh hiểu và giải quyết các bài toán liên quan đến số học một cách hiệu quả. Tài liệu này gồm 32 trang, được trích đoạn từ cuốn sách chuyên ngành với nhiều ví dụ và bài tập cụ thể, giúp học sinh nắm vững kiến thức và áp dụng vào thực tế. Việc áp dụng đồng dư thức vào giải toán số học không chỉ giúp gia tăng kiến thức mà còn rèn luyện kỹ năng suy luận và logic của học sinh, giúp họ trở thành những học sinh giỏi và tự tin khi giải các bài toán phức tạp.
Các bài toán về số chính phương
Nội dung Các bài toán về số chính phương Bản PDF - Nội dung bài viết Các bài toán về số chính phương Các bài toán về số chính phương Cuốn tài liệu với tổng cộng 69 trang này tập trung vào các bài toán liên quan đến số chính phương. Sách được biên soạn dành cho những người đam mê toán học và muốn khám phá sâu hơn về loại số này. Nội dung của cuốn sách có thể giúp độc giả hiểu rõ hơn về tính chất và ứng dụng của số chính phương trong cuộc sống hàng ngày. Việc nắm vững kiến thức về số chính phương sẽ giúp bạn giải quyết các bài toán phức tạp liên quan đến lĩnh vực này một cách hiệu quả.
Các bài toán về số nguyên tố và hợp số
Nội dung Các bài toán về số nguyên tố và hợp số Bản PDF - Nội dung bài viết Các bài toán về số nguyên tố và hợp số Các bài toán về số nguyên tố và hợp số Tài liệu này được trích đoạn từ cuốn sách có tổng cộng 44 trang, nó giải thích về các bài toán liên quan đến số nguyên tố và số hợp. Phân tích cụ thể về tính chất của các số nguyên tố, các phương pháp kiểm tra số nguyên tố, cách phân tích phân tích mối quan hệ giữa số nguyên tố và số hợp. Nó cung cấp ví dụ và bài tập để người đọc hiểu và áp dụng kiến thức vào thực tế. Đồng thời, tài liệu này cũng giúp người đọc nắm vững kiến thức căn bản về các số nguyên tố và hợp số.
Các bài toán về quan hệ chia hết trong tập hợp số
Nội dung Các bài toán về quan hệ chia hết trong tập hợp số Bản PDF - Nội dung bài viết Các bài toán về quan hệ chia hết trong tập hợp số Các bài toán về quan hệ chia hết trong tập hợp số Tài liệu này bao gồm một số bài toán thú vị về quan hệ chia hết trong tập hợp số. Những bài toán này giúp bạn hiểu rõ hơn về quy luật chia hết, cách xác định số chia và số bị chia, cũng như ứng dụng của chúng trong thực tế. Với 95 trang thông tin hữu ích, cuốn sách này sẽ giúp bạn nắm vững kiến thức và kỹ năng cần thiết để giải quyết các bài toán liên quan đến chia hết trong tập hợp số.