Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Hà Tĩnh

Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Hà Tĩnh Bản PDF Đề thi chọn học sinh giỏi tỉnh Toán lớp 12 THPT năm 2018 – 2019 sở GD và ĐT Hà Tĩnh được biên soạn theo hình thức tự luận với 4 bài toán, thí sinh làm bài trong 180 phút, kỳ thi được diễn ra vào ngày 03 tháng 12 năm 2018, đề nhằm tuyển chọn các em học sinh giỏi môn Toán ở các trường THPT tại Hà Tĩnh để tiếp tục bồi dưỡng, tạo điều kiện để các em tham dự kỳ thi HSG Toán cấp quốc gia. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Hà Tĩnh : + Có 10 đội tuyển bóng đá quốc gia ở khu vực Đông Nam Á tham gia thi đấu giải AFF Suzuki Cup 2018 trong đó có đội tuyển Việt Nam và đội tuyển Thái Lan, các đội được chia làm hai bảng, ký hiệu là bảng A và bảng B, mỗi bảng có 5 đội. Việc chia bảng được thực hiện bằng cách bốc thăm ngẫu nhiên. Tính xác suất để hai đội tuyển Việt Nam và Thái Lan nằm ở hai bảng đấu khác nhau. [ads] + Trên sa mạc có một khu đất hình chữ nhật ABCD có chiều dài AB = 70km, chiều rộng AID = 10km. Vận tốc trung bình của xe máy trên khu đất này là 20km/h, riêng đi trên cạnh CD thì vận tốc là 40km/h. Một người đi xe máy xuất phát từ A lúc 8 giờ sáng và muốn đến B sau 3 giờ nữa. Hỏi người đó có thể đến B kịp thời gian không? Xây dựng phương án di chuyển trên khu đất từ A đến B để hết ít thời gian nhất. + Một cái phễu có dạng hình nón chiều cao của phễu là h. Người ta đổ một lượng nước vào phễu sao cho chiều cao của lượng nước trong phễu là h1 = 3√7/2.h (hình H1). Ta bịt kín miệng phễu rồi lật ngược phễu lên (hình H2), gọi chiều cao của cột nước trong phễu ở hình H2 là k. Tính k/h.

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THPT Chu Văn An - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng đội tuyển học sinh giỏi môn Toán 12 năm học 2022 – 2023 lần 1 trường THPT Chu Văn An, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THPT Chu Văn An – Thanh Hóa : + Cho một miếng tôn mỏng hình chữ nhật ABCD với AB = 4dm và AD = 6dm. Trên cạnh AD lấy điểm E sao cho AE = 1dm, trên cạnh BC lấy điểm F là trung điểm BC (tham khảo hình 1). Cuộn miếng tôn lại một vòng sao cho AB và DC trùng khít nhau. Khi đó miếng tôn tạo thành mặt xung quanh của hình trụ (tham khảo hình 2). Thể tích V của tứ diện ABEF trong hình 2 bằng? + Một bồn hình trụ chứa dầu được đặt nằm ngang, có chiều dài 5m, bán kính đáy 1m, với nắp bồn đặt trên mặt nằm ngang của mặt trụ. Người ta rút dầu trong bồn tương ứng với 0,5m của đường kính đáy. Tính thể tích gần đúng nhất của khối dầu còn lại trong bồn. + Cho X là tập các giá trị của tham số m thỏa mãn đường thẳng (dy m): 12 7 cùng với đồ thị (C) của hàm số 1 3 2 4 1 3 y x mx x tạo thành hai miền kín có diện tích lần lượt là 1 2 S S thỏa mãn 1 2 S S (xem hình vẽ). Tích các giá trị của các phần tử của X là?
Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THPT Cẩm Thủy 1 - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng đội tuyển học sinh giỏi liên trường môn Toán 12 năm 2022 – 2023 lần 1 trường THPT Cẩm Thủy 1, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút (không kể thời gian giao đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THPT Cẩm Thủy 1 – Thanh Hóa : + Một cơ sở sản xuất có hai bể nước hình trụ có chiều cao bằng nhau, bán kính đáy lần lượt bằng 1mvà 1,8m . Chủ cơ sở dự định làm một bể nước mới, hình trụ, có cùng chiều cao và có thể tích bằng tổng thể tích của hai bể nước trên. Bán kính đáy của bể nước dự định làm gần nhất với kết quả nào dưới đây? + Người ta thiết kế một thùng chứa hình trụ (như hình vẽ) có thể tích V. Biết rằng giá của vật liệu làm mặt đáy và nắp của thùng bằng nhau và đắt gấp ba lần so với giá vật liệu để làm mặt xung quanh của thùng (chi phí cho mỗi đơn vị diện tích). Gọi chiều cao của thùng là h và bán kính đáy là r. Tính tỉ số h r sao cho chi phí vật liệu sản xuất thùng là nhỏ nhất? + Trong hội thi văn nghệ chào mừng ngày nhà giáo Việt Nam có 9 tiết mục lọt vào vòng chung khảo. Trong đó lớp 10A có 2 tiết mục, lớp 10B có 3 tiết mục và 4 tiết mục còn lại của 4 lớp khác nhau. Ban tổ chức sắp xếp thứ tự thi của các lớp một cách ngẫu nhiên. Tính xác suất để không có hai tiết mục của cùng một lớp liên tiếp nhau.
Đề HSG Toán 12 năm 2022 - 2023 lần 1 trường THCS THPT Như Xuân - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát học sinh giỏi môn Toán 12 năm học 2022 – 2023 lần 1 trường THCS & THPT Như Xuân, tỉnh Thanh Hóa; đề thi hình thức trắc nghiệm với 50 câu hỏi và bài toán, thời gian 90 phút (không kể thời gian phát đề); đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề HSG Toán 12 năm 2022 – 2023 lần 1 trường THCS & THPT Như Xuân – Thanh Hóa : + Một vận động viên bắn ba viên đạn vào bia với ba lần bắn độc lập. Xác suất để vận động viên bắn trúng vòng 10 điểm là 0,15. Xác suất để vận động viên bắn trúng vòng 8 điểm là 0,2. Xác suất để vận động viên bắn trúng vòng dưới 8 điểm là 0,3. Tính xác suất để vận động viên đó được ít nhất 28 điểm (tính chính xác đến hàng phần nghìn). + Cho khối nón có độ lớn góc ở đỉnh là 3, một khối cầu S1 nội tiếp trong khối nón. Gọi S2 là khối cầu tiếp xúc với tất cả các đường sinh của nón và với S1. Gọi S3 là khối cầu tiếp xúc với tất cả các đường sinh của khối nón và với S2, tương tự với khối cầu S4 S5. Gọi 1 2 V V V3 4 5 V V lần lượt là thể tích của khối cầu S S 1 2 3 và V là thể tích của khối nón. Giá trị V V 4 5 T V gần giá trị nào sau đây (làm tròn 2 chữ số sau dấu phẩy)? + Cần phải thiết kế các thùng dạng hình trụ có nắp đậy để đựng nước sạch có dung tích 3 V cm. Hỏi bán kính R(cm) của đáy hình trụ nhận giá trị nào sau đây để tiết kiệm vật liệu nhất?
Đề chọn HSG Toán THPT năm 2022 - 2023 trường Đại học Sư Phạm Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán THPT cấp trường năm học 2022 – 2023 trường Đại học Sư Phạm Hà Nội, thành phố Hà Nội. Trích dẫn Đề chọn HSG Toán THPT năm 2022 – 2023 trường Đại học Sư Phạm Hà Nội : + Cho hàm số y = (2x – 3)/(x – 2) có đồ thị (C) và hai điểm A, B thay đổi thuộc (C) sao cho hoành độ của điểm A nhỏ hơn 2, hoành độ của điểm B lớn hơn 2. Tìm giá trị nhỏ nhất của độ dài đoạn thẳng AB. + Lấy ngẫu nhiên ba số trong tập hợp S = {1; 2; 3; …; 19; 20}. Tính xác suất để hiệu của hai số bất kì trong ba số đó (số lớn trừ số bé) không nhỏ hơn 2. + Cho tứ diện ABCD có hai mặt ACD và BCD là các tam giác nhọn. Gọi G và H lần lượt là trọng tâm và trực tâm của tam giác BCD, G’ và H’ lần lượt là trọng tâm và trực tâm của tam giác ACD. Biết rằng đường thẳng HH’ vuông góc với mặt phẳng (ACD). a) Chứng minh rằng bốn điểm A, B, H và H’ đồng phẳng. b) Chứng minh rằng đường thẳng GG’ vuông góc với mặt phẳng (BCD).