Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Một số chuyên đề bồi dưỡng học sinh giỏi Toán 8

Tài liệu gồm 251 trang, tuyển tập một số chuyên đề bồi dưỡng học sinh giỏi Toán 8, hỗ trợ học sinh trong quá trình ôn tập chuẩn bị cho kỳ thi chọn học sinh giỏi Toán 8 các cấp (cấp trường, cấp quận / huyện, cấp thành phố / tỉnh …). CHỦ ĐỀ 1 . HẰNG ĐẲNG THỨC. + Các hằng đẳng thức cơ bản. + Các hằng đẳng thức mở rộng hay sử dụng. CHUYÊN ĐỀ 2 . PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ. + Phương pháp tách hạng tử. + Phương pháp nhóm hạng tử. + Phương pháp dùng hằng đẳng thức. + Phương pháp thêm, bớt cùng một hạng tử. + Phương pháp đổi biến. + Phương pháp hệ số bất định. + Đối với đa thức đa ẩn. + Các ứng dụng của phân tích đa thức thành nhân tử. CHUYÊN ĐỀ 3 . GIÁ TRỊ LỚN NHẤT, GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC. + Tìm GTLN – GTNN của tam thức bậc hai ax2 + bx + c. + Tìm GTLN – GTNN của đa thức có bậc cao hơn 2. + Đa thức có từ hai biến trở lên. + Tìm GTLN – GTNN của biểu thức có quan hệ ràng buộc giữa các biến. + Phương pháp đổi biến số. + Sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối. + Dạng phân thức. CHUYÊN ĐỀ 4 . PHƯƠNG TRÌNH ĐẠI SỐ. + Phương trình bậc nhất một ẩn. + Bất phương trình bậc nhất một ẩn. + Phương trình bậc cao. CHUYÊN ĐỀ 5 . ĐỒNG NHẤT THỨC. + Các bài toán về biểu thức nguyên. + Các dạng toán về phân thức đại số. + Rút gọn biểu thức. + Biểu thức có tính quy luật. CHUYÊN ĐỀ 6 . BẤT ĐẲNG THỨC. + Dùng định nghĩa và các phép biến đổi tương đương. + Dùng các phép biến đổi tương đương. + Bất đẳng thức dạng nghịch đảo (Cô-si cộng mẫu). + Dùng các bất đẳng thức phụ. + Phương pháp phản chứng. CHUYÊN ĐỀ 7 . ĐA THỨC. + Tính chia hết của đa thức. + Phần dư trong phép chia đa thức. + Dùng phương pháp xét giá trị riêng để tìm hệ số của một đa thức. + Đặt phép chia để tìm hệ số. CHUYÊN ĐỀ 8 . HÌNH HỌC. + Hình thang, hình thang cân. + Đường trung bình của tam giác, hình thang. + Đối xứng trục, đối xứng tâm. + Hình bình hành. + Hình chữ nhật. + Hình thoi. + Hình vuông. + Các bài tập tổng hợp về tứ giác đặc biệt. Xem thêm : Đề thi HSG Toán 8

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trường hợp đồng dạng thứ ba
Tài liệu gồm 15 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ ba, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Chỉ ra hai cặp góc tương ứng bằng nhau trong hai tam giác để suy ra hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ ba để tính độ dài các cạnh, chứng minh hệ thức cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ ba (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng tỉ lệ.
Chuyên đề trường hợp đồng dạng thứ hai
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ hai, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: + Bước 1: Xét hai tam giác, chọn ra hai góc bằng nhau và chứng minh (nếu cần). + Bước 2: Lập tỉ số các cạnh tạo nên mỗi góc đó, rồi chứng minh chúng bằng nhau. + Bước 3: Từ đó, chứng minh hai tam giác đồng dạng. Dạng 2. Sử dụng các trường hợp đồng dạng thứ hai để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ hai (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau hoặc cặp cạnh tương ứng còn lại bằng nhau.
Chuyên đề trường hợp đồng dạng thứ nhất
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề trường hợp đồng dạng thứ nhất, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. TÓM TẮT LÝ THUYẾT II. BÀI TẬP VÀ CÁC DẠNG TOÁN Dạng 1. Chứng minh hai tam giác đồng dạng. Phương pháp giải: Để chứng minh hai tam giác đồng dạng, ta lập tỉ số các cạnh tương ứng của hai tam giác và chứng minh chúng bằng nhau, từ đó ta được điều phải chứng minh. Dạng 2. Sử dụng trường hợp đồng dạng thứ nhất để tính độ dài các cạnh hoặc chứng minh các góc bằng nhau. Phương pháp giải: Sử dụng trường hợp đồng dạng thứ nhất (nếu cần) để chứng minh hai tam giác đồng dạng, từ đó suy ra các cặp góc tương ứng bằng nhau.
Chuyên đề khái niệm hai tam giác đồng dạng
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề khái niệm hai tam giác đồng dạng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN II. DẠNG BÀI TẬP CƠ BẢN Dạng 1. Vẽ tam giác đồng dạng với tam giác cho trước. Chứng minh hai tam giác đồng dạng. 1. Vẽ tam giác đồng dạng với tam giác cho trước. + Xác định tỉ số đồng dạng. + Kẻ đường thẳng song song với một cạnh của tam giác. 2. Chứng minh hai tam giác đồng dạng. + Sử dụng định nghĩa hoặc định lí nhận biết hai tam giác đồng dạng. Dạng 2: Tính độ dài cạnh, tỉ số đồng dạng thông qua các tam giác đồng dạng. Dạng 3: Chứng minh đẳng thức cạnh thông qua các tam giác đồng dạng.