Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai

Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 cấp tỉnh năm 2022 - 2023 Đề học sinh giỏi Toán lớp 9 cấp tỉnh năm 2022 - 2023 Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp tỉnh năm học 2022 – 2023 do sở Giáo dục và Đào tạo tỉnh Gia Lai tổ chức. Kỳ thi diễn ra vào ngày 14 tháng 02 năm 2023, bao gồm đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề: Cho hàm số \(y = mx^2 + 8\), có đồ thị là đường thẳng \(d\). Tìm tất cả các giá trị của tham số \(m\) để đường thẳng \(d\) cắt trục hoành và trục tung tại các điểm A và B sao cho diện tích tam giác OAB bằng 2 (với O là gốc tọa độ). Cho hai vòi nước chảy vào 1 bồn nước. Nếu cho vòi thứ nhất chảy vào bồn rỗng trong 3 giờ rồi dừng lại, sau đó cho vòi thứ hai chảy tiếp vào trong 8 giờ nữa thì đầy bồn. Nếu cho vòi thứ nhất chảy vào bồn rỗng trong 1 giờ rồi cho cả 2 vòi chảy tiếp trong 4 giờ nữa thì số nước đã chảy vào bằng 8/9 bồn. Hỏi nếu mỗi vòi chảy riêng thì trong bao lâu nước sẽ đầy bồn đó? Cho đường tròn O đường kính BC = R√2 và điểm A thay đổi trên đường tròn. Đường phân giác trong góc A của tam giác ABC cắt đường tròn O tại K. Hạ AH vuông góc với BC. a) Chứng minh rằng khi A thay đổi, tổng 2AH + KH luôn không đổi. Tính góc B của tam giác ABC biết 3AH = R. b) Đặt AH = x. Tìm x sao cho diện tích tam giác OAH đạt giá trị lớn nhất. Để tải file WORD, vui lòng click vào đường link ở đây: [đường link dẫn tới file WORD]

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Bà Rịa - Vũng Tàu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Bà Rịa – Vũng Tàu; kỳ thi được diễn ra vào thứ Năm ngày 23 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Bà Rịa – Vũng Tàu : + Trên mặt phẳng toạ độ Oxy, cho điểm A thuộc parabol (P): y = -x2 có tung độ yA = –4. Tìm tọa độ các điểm B thuộc (P) sao cho tam giác OAB vuông tại B. + Cho điểm M nằm ngoài đường tròn (O). Từ M vẽ hai tiếp tuyến MA, MC của đường tròn (O) (A, C là các tiếp điểm). Vẽ cát tuyến MBD của (O) sao cho B nằm giữa M và D, BC < BD. 1) Chứng minh 2) Trên đoạn BD lấy điểm F sao cho FAD = BAC. Chứng minh hai tam giác ABF, ACD đồng dạng và AD.BC + AB.CD = AC.BD. 3) Tiếp tuyến tại B của đường tròn (O) cắt MC tại N và cắt đường thẳng CD tại P; ND cắt đường tròn (O) tại E. Chứng minh A, E, P thẳng hàng. + Cho điểm A nằm ngoài đường tròn (O). Từ điểm A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ cát tuyến AED (E nằm giữa A và D) không đi qua O cắt BC ở F. Hai tia CE và DB cắt nhau ở G, trên tia đối của tia BC lấy điểm H sao cho tứ giác CDHG nội tiếp đường tròn.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT An Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào thứ Bảy ngày 18 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT An Giang : + Một số nguyên có ba chữ số có tính chất: nếu ta bỏ chữ số đầu tiên của số đó ta được một số chính phương, nếu ta bỏ đi chữ số cuối cùng ta vẫn được một số chính phương. Tìm tất cả các số có ba chữ số có tính chất như vậy. + Cho đường tròn (O) tâm O đường kính AB. Kéo dài AB về phía B lấy một điểm S tùy ý, kẻ cát tuyến SMC với đường tròn (O). Từ C vẽ dây CD vuông góc với AB; AM và BC cắt nhau tại N, AB và DM cắt nhau tại P. a) Chứng minh rằng NP song song CD. b) Chứng tỏ rằng OP.OS = OA2. + Một quyển sách có 30 bài học, mỗi bài học đều được bắt đầu ở một trang mới, các bài học có độ dài là 1, 2, 3, …, 30 trang (không nhất thiết sắp theo thứ tự). Hỏi số lượng bài học lớn nhất bắt đầu từ trang đánh số lẻ của quyển sách là bao nhiêu?
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Ninh Thuận; kỳ thi được diễn ra vào thứ Ba ngày 11 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Ninh Thuận : + Tìm số tự nhiên nhỏ nhất thỏa cả hai tính chất sau: a) Chữ số cuối cùng bằng 6. b) Nếu bỏ chữ số cuối cùng ấy và thêm chữ số 6 vào trước các chữ số còn lại thì số mới nhận được gấp 4 lần số ban đầu. + Chứng minh rằng: a2 + b2 + c2 > ab + bc + ac với mọi a, b, c. + Cho tam giác ABC đều cạnh a với đường cao AH. M là một điểm bất kỳ trên cạnh BC. Vẽ ME vuông góc AB, MF vuông góc AC. Gọi O là trung điểm của AM. 1) Chứng minh rằng 5 điểm A, E, H, M, F cùng nằm trên một đường tròn. Tứ giác OEHF là hình gì? 2) Tìm giá trị nhỏ nhất của diện tích tứ giác OEHF theo a khi M di động trên cạnh BC.
Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 - 2023 sở GDĐT Hà Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Giang; kỳ thi được diễn ra vào thứ Tư ngày 15 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THCS năm 2022 – 2023 sở GD&ĐT Hà Giang : + Cho Parabol (P): y = x2 và đường thẳng d: y = 2x – m. Tìm m để đường thẳng d cắt (P) tại hai điểm phân biệt có hoành độ x1, x2 thỏa mãn x13 + x23 = 5. + Cho x, y, z là ba số thực đương thỏa mãn: x + y + z = 23 và xy + yz + zx = 4. Chứng minh rằng? + Cho tam giác ABC vuông tại A, AB < AC và M là trung điểm cạnh BC. Gọi P là một điểm bất kì trên đoạn AM (P khác A và M). K, L lần lượt là các điểm thuộc tia BP, CP sao cho AKB = ABC và ALC = ACB. Đường tròn (I) ngoại tiếp tam giác BPL cắt đường thẳng AB tại điểm F khác B. Đường tròn (J) ngoại tiếp tam giác CPK cắt đường thẳng AC tại điểm E khác C. a) Chứng minh rằng BKA và BAP đồng dạng. b) Chứng minh rằng IJ song song với EF.