Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai

Nội dung Đề học sinh giỏi lớp 9 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Gia Lai Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 cấp tỉnh năm 2022 - 2023 Đề học sinh giỏi Toán lớp 9 cấp tỉnh năm 2022 - 2023 Chúng tôi xin giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 cấp tỉnh năm học 2022 – 2023 do sở Giáo dục và Đào tạo tỉnh Gia Lai tổ chức. Kỳ thi diễn ra vào ngày 14 tháng 02 năm 2023, bao gồm đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi trong đề: Cho hàm số \(y = mx^2 + 8\), có đồ thị là đường thẳng \(d\). Tìm tất cả các giá trị của tham số \(m\) để đường thẳng \(d\) cắt trục hoành và trục tung tại các điểm A và B sao cho diện tích tam giác OAB bằng 2 (với O là gốc tọa độ). Cho hai vòi nước chảy vào 1 bồn nước. Nếu cho vòi thứ nhất chảy vào bồn rỗng trong 3 giờ rồi dừng lại, sau đó cho vòi thứ hai chảy tiếp vào trong 8 giờ nữa thì đầy bồn. Nếu cho vòi thứ nhất chảy vào bồn rỗng trong 1 giờ rồi cho cả 2 vòi chảy tiếp trong 4 giờ nữa thì số nước đã chảy vào bằng 8/9 bồn. Hỏi nếu mỗi vòi chảy riêng thì trong bao lâu nước sẽ đầy bồn đó? Cho đường tròn O đường kính BC = R√2 và điểm A thay đổi trên đường tròn. Đường phân giác trong góc A của tam giác ABC cắt đường tròn O tại K. Hạ AH vuông góc với BC. a) Chứng minh rằng khi A thay đổi, tổng 2AH + KH luôn không đổi. Tính góc B của tam giác ABC biết 3AH = R. b) Đặt AH = x. Tìm x sao cho diện tích tam giác OAH đạt giá trị lớn nhất. Để tải file WORD, vui lòng click vào đường link ở đây: [đường link dẫn tới file WORD]

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT thành phố Hải Dương (vòng 2)
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo thành phố Hải Dương (vòng 2); kỳ thi được diễn ra vào ngày 01 tháng 10 năm 2022.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT huyện Phúc Thọ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Phúc Thọ, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT huyện Phúc Thọ – Hà Nội : + Cho x, y là hai số dương thoả mãn: (x + y)2 >= 6 + 2xy. Tìm giá trị nhỏ nhất của biểu thức Q = x4 – 2×2 + y2 + 6/x2 + 8/y2. + Cho M = (x2 + 2yz – 1)(y2 + 2xz – 1)(1 – z2 – 2xy). Trong đó x, y, z là các số hữu tỉ thỏa mãn xy + yz + zx = 1. Chứng minh rằng: M là một số hữu tỉ. + Cho tam giác ABC vuông tại A, đường cao AH, I là trung điểm AC, F là hình chiếu của I trên BC. Kẻ tia Cx vuông góc AC cắt IF tại E. a) Cho AB = 20cm, HC = 9cm. Tính độ dài AH và AC. b) Chứng minh rằng: HA.HI = HB.HE. c) Chứng minh AE vuông góc với BI.
Đề học sinh giỏi Toán 9 năm 2022 - 2023 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; đề thi gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào ngày … tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi Toán 9 năm 2022 – 2023 trường THCS Cầu Giấy – Hà Nội : + Với các số thực không âm a, b, c thỏa mãn a + b + c = 3, tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức T = 1/(a + 1) + 1/(b + 1) + 1(c + 1). + Cho tam giác ABC nhọn, không cân (AB < AC). Các đường cao AD, BE, CF của tam giác ABC đồng qui tại H. Gọi M là trung điểm của BC; I là trung điểm của AH. 1) Chứng minh IEM = 90°. 2) Đường thẳng qua I và vuông góc với HM cắt HM, EF lần lượt tại N, S. Đoạn thẳng IM cắt EF tại J. Chứng minh IJ.IM = IN.IS và SH song song với BC. 3) Đường thẳng SI cắt AB, AC lần lượt tại P, Q. Chứng minh I là trung điểm của PQ. + Xét tập hợp A gồm các số nguyên dương thỏa mãn đồng thời các điều kiện sau: (i) Phần tử lớn nhất của tập hợp A là 100. (ii) Với mọi phần tử x thuộc A, nếu x không phải là phần tử nhỏ nhất thì tồn tại a, b, c thuộc A (a, b, c không nhất thiết phân biệt) sao cho x = a + b + c. 1) Chứng minh tất cả các phần tử của tập hợp A đều là số chẵn. 2) Tập hợp A có nhiều nhất là bao nhiêu phần tử?
Đề khảo sát HSG Toán 9 lần 1 năm 2022 - 2023 trường THCS Nguyễn Hồng Lễ - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng đội dự tuyển học sinh giỏi cấp tỉnh môn Toán 9 lần 1 năm học 2022 – 2023 trường THCS Nguyễn Hồng Lễ, thành phố Sầm Sơn, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2022.