Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Tứ Kỳ Hải Dương

Nội dung Đề học sinh giỏi lớp 9 môn Toán vòng 2 năm 2022 2023 phòng GD ĐT Tứ Kỳ Hải Dương Bản PDF - Nội dung bài viết Đề học sinh giỏi Toán lớp 9 vòng 2 năm 2022 - 2023 phòng GD&ĐT Tứ Kỳ - Hải Dương Đề học sinh giỏi Toán lớp 9 vòng 2 năm 2022 - 2023 phòng GD&ĐT Tứ Kỳ - Hải Dương Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán lớp 9 vòng 2 năm học 2022 - 2023 phòng Giáo dục và Đào tạo huyện Tứ Kỳ, tỉnh Hải Dương. Đề thi bao gồm các câu hỏi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề thi: 1. Cho hai số nguyên dương x, y thỏa mãn: \(2x^2 + 2y^2 = xy + x + y + 1\). Chứng minh rằng x và y là hai số chính phương liên tiếp. Tìm các cặp số tự nhiên x, y thỏa mãn \(6x^2 + y^2 = yx + 30\). 2. Cho tam giác ABC có ba góc nhọn, các đường cao AD, BE, CF cắt nhau tại H. Trên đoạn thẳng AD lấy điểm M sao cho ∠BMC = 90°. Gọi S, S', S'' lần lượt là diện tích các tam giác BAC, BMC, BHC. a) Chứng minh rằng: S = S' + S''. b) Gọi K, P lần lượt là hình chiếu của D trên BE, CF. Chứng minh rằng KP // EF. 3. Trên các cạnh BC, CA, AB của tam giác ABC lần lượt lấy các điểm M, N, P. Đặt S, S', S'' lần lượt là diện tích các tam giác ANP, BMP, CMN, ABC. Chứng minh rằng: \(3S = S' + 2S'' + 64\). Đề thi sẽ là cơ hội thử thách khả năng giải quyết bài toán và logic của các em học sinh. Hy vọng các em sẽ cố gắng hết mình để giải quyết các câu hỏi thú vị này. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Hà Nội
Sáng thứ Tư ngày 13 tháng 01 năm 2021, sở Giáo dục và Đào tạo thành phố Hà Nội tổ chức kỳ thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 9 năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hà Nội : + Với các số thực không âm a, b, c thỏa mãn a2 + b2 + c2 = 1, tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức Q = √(a + b) + √(b + c) + √(c + a). + Tìm tất cả các số nguyên dương x, y, z thỏa mãn 3^x + 2^y = 1 + 2^z. + Cho một hình chữ nhật có diện tích bằng 1. Năm điểm phân biệt được đặt tùy ý vào hình chữ nhật sao cho không có ba điểm nào thẳng hàng (mỗi điểm trong năm điểm đó có thể được đặt trên cạnh hoặc đặt nằm trong hình chữ nhật). a) Chứng minh mọi tam giác tạo bởi ba điểm trong năm điểm đã cho đều có diện tích không vượt quá 3. b) Với mỗi cách đặt năm điểm vào hình chữ nhật như trên, gọi N là số tam giác có ba đỉnh là ba điểm trong năm điểm đó và có diện tích không vượt quá 1. Tìm giá trị nhỏ nhất của N.
Đề học sinh giỏi Toán 9 vòng 2 năm 2020 - 2021 phòng GDĐT Ba Đình - Hà Nội
Đề học sinh giỏi Toán 9 vòng 2 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 19 tháng 12 năm 2020.
Đề học sinh giỏi Toán 9 năm 2020 - 2021 phòng GDĐT thành phố Hưng Yên
Đề học sinh giỏi Toán 9 năm học 2020 – 2021 phòng GD&ĐT thành phố Hưng Yên gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút, kỳ thi được diễn ra vào ngày 21 tháng 12 năm 2020.
Đề HSG Toán 9 vòng 1 năm 2020 - 2021 trường Nguyễn Tất Thành - Hà Nội
Đề HSG Toán 9 vòng 1 năm học 2020 – 2021 trường THCS&THPT Nguyễn Tất Thành – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút, kỳ thi được diễn ra vào ngày 15 tháng 09 năm 2020.