Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tham khảo tuyển sinh 10 môn Toán 2024 - 2025 phòng GDĐT Quận 8 - TP HCM

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề tham khảo tuyển sinh vào lớp 10 môn Toán năm học 2024 – 2025 phòng Giáo dục và Đào tạo Quận 8, thành phố Hồ Chí Minh; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tham khảo tuyển sinh 10 môn Toán 2024 – 2025 phòng GD&ĐT Quận 8 – TP HCM : + Để ước tính chiều cao tối đa của trẻ em khi đạt đến độ trưởng thành, hoàn toàn có thể dựa vào chiều cao của bố mẹ. Cách tính chiều cao của con theo bố mẹ dựa trên công thức tính như sau. Trong đó: C là chiều cao của người con (cm) B là chiều cao của người bố (cm) M là chiều cao của người mẹ (cm) A = 1 khi người con có giới tính là Nam A = -1 khi người con có giới tính là Nữ a) Em hãy dùng công thức trên để tìm chiều cao tối đa của bạn Nam (giới tính là nam) biết Ba của bạn Nam có chiều cao là 172cm và Mẹ của bạn Nam có chiều cao là 160cm. (Làm tròn kết quả đến hàng đơn vị) b) Bạn Hoa (giới tính là nữ) có chiều cao là 164cm. Em hãy tính xem chiều cao tối đa của Mẹ bạn Hoa khi biết chiều cao của Ba bạn Hoa là 175cm. (Làm tròn kết quả đến hàng đơn vị). + Một cửa hàng thực hiện chương trình khuyến mãi một sản phẩm bánh su kem: Mua 4 hộp tặng 1 hộp, bạn An dự định mua 7 hộp bánh, bạn Mai dự định mua 3 hộp bánh. Nếu hai bạn góp tiền mua chung thì sẽ tốn ít tiền hơn khi từng người mua riêng là 50 000 đồng. Hỏi giá bán một hộp bánh su kem là bao nhiêu? + Do các hoạt động công nghiệp thiếu kiểm soát của con người làm cho nhiệt độ Trái đất tăng dần một cách rất đáng lo ngại. Đây cũng là một trong các tác nhân gây ra hiện tượng biến đổi khí hậu dẫn đến lũ lụt, triều cường ngày càng dâng cao. Vào năm 1950, các nhà khoa học đưa ra dự báo nhiệt độ trung bình trên bề mặt trái đất mỗi năm sẽ tăng trung bình 0,02 0 C. Biết rằng, vào năm 1950, nhiệt độ trung bình trên bề mặt trái đất là 15 0 C. Gọi T là nhiệt độ trung bình của bề mặt trái đất tính theo độ C, n là số năm kể từ năm 1950 a) Cho biết T phụ thuộc vào t theo công thức hàm số bậc nhất: T = an + b (a ≠ 0). Em hãy xác định hệ số a và b b) Vào năm nào thì nhiệt độ trung bình trên bề mặt trái đất đạt 16,50 C?

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đắk Nông
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Đắk Nông Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD ĐT Đắk Nông Đề tuyển sinh môn Toán (chuyên) năm 2023 - 2024 sở GD ĐT Đắk Nông Sytu xin được giới thiệu đến quý thầy cô và các em học sinh đề chính thức của kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023-2024 tại sở Giáo dục và Đào tạo tỉnh Đắk Nông. Kỳ thi sẽ diễn ra vào chiều thứ Sáu, ngày 09 tháng 06 năm 2023. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GD&ĐT Đắk Nông: Bài 1: Cho parabol (P): y = 1/2x^2 và đường thẳng (d): y = mx - 1/2m^2 + m + 1 với m là tham số. Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt có hoành độ x1, x2 sao cho |x1 - x2| = 2. Bài 2: Cho tập hợp A = {201, 203, ..., 2021, 2023} gồm 912 số tự nhiên lẻ. Cần chọn ra ít nhất bao nhiêu số từ tập hợp A sao cho trong các số được chọn luôn tồn tại hai số có tổng bằng 2288? Bài 3: Cho tam giác ABC có 3 góc nhọn (AB < AC). Vẽ đường cao AD, BE, CF của tam giác đó. Gọi H là giao điểm của các đường cao vừa vẽ. Gọi M, N lần lượt là trung điểm của các đoạn thẳng AH và BC. a) Chứng minh rằng tam giác MFN là tam giác vuông. b) Chứng minh FMN đồng dạng FAC. c) Gọi P, Q lần lượt là chân các đường vuông góc kẻ từ M, N đến đường thẳng DF. Chứng minh rằng giao điểm của FE và MN thuộc đường tròn có đường kính PQ. Hy vọng với những bài toán này, các em sẽ có cơ hội thể hiện kiến thức và tư duy logic của mình một cách tốt nhất. Chúc các em ôn tập tốt và thành công trong kỳ thi sắp tới!
Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Quảng Ngãi
Nội dung Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Quảng Ngãi Bản PDF - Nội dung bài viết Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Quảng Ngãi Đề tuyển sinh vào môn Toán năm 2023 2024 sở GD ĐT Quảng Ngãi Xin chào quý thầy cô và các em học sinh! Đây là đề chính thức ở kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 - 2024 của sở Giáo dục và Đào tạo tỉnh Quảng Ngãi, sẽ diễn ra vào thứ Sáu ngày 09 tháng 06 năm 2023. Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GD&ĐT Quảng Ngãi bao gồm các bài toán sau: + Hai đội công nhân cùng thi công một đoạn đường nông thôn và dự định hoàn thành công việc đó trong 16 ngày. Khi làm được 12 ngày thì đội I được điều động đi làm việc ở nơi khác. Những ngày sau đó, đội II làm việc với năng suất gấp 1,5 lần năng suất ban đầu nên đã hoàn thành công việc đúng thời gian dự định. Hỏi theo năng suất ban đầu, nếu mỗi đội làm một mình thì phải bao nhiêu ngày mới hoàn thành công việc trên? + Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4 cm, HC = 5cm. Tính độ dài AB và AH. + Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn (O;R). Hai đường cao AE và BF cắt nhau tại H. a) Chứng minh tứ giác CEHF nội tiếp đường tròn. Xác định tâm của đường tròn đó. b) Kẻ đường kính AD của đường tròn (O). Chứng minh tứ giác BHCD là hình bình hành. Biết BC = R3, tính AH theo R. c) Gọi N là giao điểm của đường thẳng CH và AB, K là giao điểm của hai đường thẳng BC và FN. Chứng minh BK.CE = BE.CK. Hy vọng rằng các em sẽ thực hiện bài thi tốt và đạt kết quả cao. Chúc các em thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Long An
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Long An Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Long An Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Long An Chào đón quý thầy, cô giáo và các em học sinh, Sytu xin giới thiệu đến mọi người đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Long An. Kỳ thi sẽ diễn ra vào ngày 08/06/2023. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Long An bao gồm các câu hỏi sau: Câu 1: Giả sử cửa hàng GNH có chương trình giảm giá cho mặt hàng X là 20% và mặt hàng Y là 15%. Một khách hàng mua 2 món hàng X và 1 món hàng Y phải trả 395,000 đồng. Sau khi thay đổi giảm giá, cô Định mua 3 món hàng X và 2 món hàng Y phải trả 603,000 đồng. Hãy tính giá niêm yết của mỗi món hàng X và Y. Câu 2: Cho nửa đường tròn tâm O có đường kính AB = 2R. Từ A và B lần lượt kẻ hai tiếp tuyến Au, Bv với nửa đường tròn. Chứng minh rằng tứ giác AMCO nội tiếp đường tròn và CBO = CNO. Tiếp theo, chứng minh rằng ba điểm M, K, B thẳng hàng với nhau. Cuối cùng, tính tỉ số diện tích giữa tam giác ABC và tam giác MON khi AM = 1.5R. Câu 3: Ông Tuệ khóa két sắt bằng mật mã gồm 4 chữ số (không chứa số 0) và tổng của 4 chữ số đó bằng 9. Ông cần thử tối đa bao nhiêu lần mật mã khác nhau để chắc chắn mở được két sắt? Hy vọng rằng đề thi này sẽ giúp các em chuẩn bị tốt cho kỳ thi tuyển sinh. Chúc quý thầy, cô giáo và các em học sinh thành công!
Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Nguyên
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Nguyên Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Nguyên Đề tuyển sinh môn Toán (chuyên) năm 2023 2024 sở GD ĐT Thái Nguyên Chào các thầy cô và các em học sinh, Sytu xin giới thiệu đến quý vị đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên Toán và chuyên Tin học) năm học 2023 – 2024 của sở Giáo dục và Đào tạo tỉnh Thái Nguyên. Kỳ thi sẽ diễn ra vào ngày 08/06/2023. Dưới đây là một số câu hỏi trích từ Đề tuyển sinh môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Thái Nguyên: 1. Chứng minh rằng số \(2025n + n^2 + 2024n + 5\) không phải là số chính phương với mọi số tự nhiên n. 2. Cho tập hợp S gồm có 18 số tự nhiên khác nhau bất kỳ. a. Lấy ra 5 phần tử bất kỳ của tập hợp S. Chứng minh rằng trong 5 phần tử lấy ra đó luôn tồn tại 3 phần tử có tổng chia hết cho 3. b. Chứng minh rằng luôn tồn tại 9 phần tử của tập hợp S có tổng chia hết cho 9. 3. Cho tam giác ABC vuông tại A có đường cao AH. Trên đoạn thẳng AB lấy điểm K sao cho AB = 4AK. Trên tia đối của tia HA lấy điểm I sao cho HI = 1/4.AH. Kẻ KP vuông góc với đường thẳng AH (P thuộc AH). a. Chứng minh rằng AH = PI. b. Chứng minh rằng tam giác IKC vuông tại I. Chúc các em học sinh ôn tập hiệu quả và thành công trong kỳ thi sắp tới! Hãy cố gắng hết mình để đạt kết quả tốt nhất. Chúng tôi luôn tin tưởng vào năng lực và sự cố gắng của các em.