Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Dương

Nội dung Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 2024 sở GD ĐT Bình Dương Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn đội tuyển học sinh giỏi THPT dự thi cấp Quốc gia môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Bình Dương. Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2023 – 2024 sở GD&ĐT Bình Dương : + Cho tam giác ABC nhọn, không cân, nội tiếp trong đường tròn (O). Một đường tròn (O’) thay đổi, luôn đi qua B, C và cắt các cạnh AB, AC theo thứ tự ở D, E. Gọi D’, E’ lần lượt là các điểm đối xứng với D, E qua trung điểm các cạnh AB, AC. a) Chứng minh rằng trung điểm D’E’ luôn thuộc một đường thẳng cố định. b) Trên cung nhỏ và cung lớn BC của (O), lần lượt lấy các điểm R, S sao cho (DER), (DES) tiếp xúc trong với (O). Phân giác trong của các góc BRC, BSC cắt nhau ở K. Chứng minh rằng đường tròn (DEK) luôn tiếp xúc với đường thẳng BC. + Trên mặt phẳng tọa độ Oxy, cho S là tập hợp các điểm (x;y) thỏa mãn đồng thời hai điều kiện: i) x, y thuộc N và ii) 0 ≤ x ≤ y ≤ 2023. a) Tính số phần tử của S. b) Hỏi có bao nhiêu tập A (A con S) gồm 2023 phần tử của S sao cho A không chứa hai điểm nào có cùng hoành độ hoặc cùng tung độ? + Cho số nguyên n ≥ 1. Tìm số lượng lớn nhất các cặp gồm 2 phần tử phân biệt của tập {1; 2; …; n} sao cho tổng của các cặp khác nhau là các số nguyên khác nhau và không vượt quá n.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán THPT học 2017 2018 sở GD và ĐT Thừa Thiên Huế
Nội dung Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán THPT học 2017 2018 sở GD và ĐT Thừa Thiên Huế Bản PDF Đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 THPT học 2017 – 2018 sở GD và ĐT Thừa Thiên Huế gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết .
Đề thi thử HSG lớp 12 môn Toán THPT năm học 2017 2018 trường THPT Bình Xuyên Vĩnh Phúc
Nội dung Đề thi thử HSG lớp 12 môn Toán THPT năm học 2017 2018 trường THPT Bình Xuyên Vĩnh Phúc Bản PDF Đề thi thử HSG Toán lớp 12 THPT năm học 2017 – 2018 trường THPT Bình Xuyên – Vĩnh Phúc gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi : + Trong mặt phẳng với hệ trục tọa độ vuông góc Oxy, cho đường tròn (C) và đường thẳng (d) lần lượt có phương trình (x – 2)^2 + (y + 1)^2 = 8 và x – 2y + 3 = 0. Cho hình thoi ABCD ngoại tiếp đường tròn (C) và điểm A thuộc đường thẳng (d). Hãy tìm tọa độ các đỉnh A, B, C, D biết rằng BD = 2AC và tung độ của điểm A không nhỏ hơn 2. [ads] + Cho hình chóp S.ABCD có đáy ABCD là hình vuông và tam giác SAB là tam giác cân tại đỉnh S. Góc giữa đường thẳng SAvà mặt phẳng đáy bằng 45 độ, góc giữa mặt phẳng (SAB) và mặt phẳng đáy bằng 60 độ. Tính thể tích khối chóp S.ABCD biết rằng khoảng cách giữa hai đường thẳng CD và SA bằng a√6. + Cho hàm số y = (x – 2)/(x – 1) có đồ thị (C). Hãy lập phương trình đường thẳng (d) đi qua điểm M (3; -1) và cắt đồ thị (C) tại hai điểm phân biệt A, B sao cho MB = 3.MA. File WORD (dành cho quý thầy, cô):
Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An Gia Lai
Nội dung Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An Gia Lai Bản PDF Đề thi chọn học sinh giỏi vòng trường môn Toán trường THPT Chu Văn An – Gia Lai gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC cân tại A, có đỉnh A(-1; 4) và các điểm B, C thuộc đường thẳng Δ: x – y – 4 = 0. Xác định tọa độ điểm B và C, biết diện tích tam giác ABC bằng 18. [ads] + Cho hình chóp S.ABCD, đáy ABCD là hình chữ nhật có AB = a, BC = b, SA = SB = SC = SD = c. K là hình chiếu vuông góc của P xuống AC. a/ Tính độ dài đoạn vuông góc chung của SA và BK. b/ Gọi M, N lần lượt là trung điểm của đoạn thẳng AK và CD. Chứng minh: Các đường thẳng BM và MN vuông góc nhau. + Cho tập A = {1; 2; 3; 4; 5; 6; 7; 8; 9}. Lập ngẫu nhiên một số có 3 chữ số khác nhau với các chữ số chọn từ tập A. Tính xác suất để số lập được chia hết cho 6. File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Hải Dương
Nội dung Đề thi chọn HSG tỉnh lớp 12 môn Toán năm học 2017 2018 sở GD và ĐT Hải Dương Bản PDF Đề thi chọn HSG tỉnh Toán lớp 12 năm học 2017 – 2018 sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi : + Môn bóng đá nam SEA GAME có 10 đội bóng tham dự trong đó có Việt Nam và Thái Lan. Chia 10 đội bóng này thành 2 bảng A, B. Mỗi bảng có 5 đội. Tính xác suất sao cho Việt Nam và Thái Lan ở cùng một bảng. [ads] + Cho tứ diện ABCD có AB = CD = c, AC = BD = b, AD = BC = a. a. Tính góc giữa hai đường thẳng AB, CD b. Chứng minh rằng trọng tâm của tứ diện ABCD cách đều tất cả các mặt của tứ diện + Cho hình chóp S.ABCD có SA = x, tất cả các cạnh còn lại có độ dài bằng 1. Tính thể tích khối chóp đó theo x và tìm x để thể tích đó là lớn nhất. File WORD (dành cho quý thầy, cô):