Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát cuối năm lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Trãi Hà Nội

Nội dung Đề khảo sát cuối năm lớp 9 môn Toán năm 2022 2023 trường THCS Nguyễn Trãi Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát cuối năm môn Toán lớp 9 trường THCS Nguyễn Trãi Hà Nội Đề khảo sát cuối năm môn Toán lớp 9 trường THCS Nguyễn Trãi Hà Nội Chào quý thầy cô và các em học sinh lớp 9! Sytu hân hạnh giới thiệu đến quý vị đề khảo sát chất lượng cuối năm môn Toán lớp 9 năm học 2022 - 2023 tại trường THCS Nguyễn Trãi, quận Thanh Xuân, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 04 tháng 05 năm 2023, đề thi bao gồm đáp án và hướng dẫn chấm điểm. Trích dẫn từ Đề khảo sát cuối năm Toán lớp 9 năm 2022 - 2023 trường THCS Nguyễn Trãi Hà Nội: + Đề bài 1: Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô và một xe máy cùng khởi hành từ A để đi đến B với vận tốc của mỗi xe không đổi trên toàn bộ quãng đường AB dài 60 km. Do vận tốc xe ô tô lớn hơn vận tốc xe máy là 10 km/h nên xe ô tô đến B sớm hơn xe máy 12 phút. Tính vận tốc của mỗi xe. + Đề bài 2: Một bóng đèn huỳnh quang có dạng một hình trụ có chiều dài bằng 120cm và bán kính của đường tròn đáy bằng 2cm. Tính thể tích của bóng đèn đó. (Lấy pi ~ 3,14). + Đề bài 3: Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y = mx + 4. a) Chứng minh đường thẳng (d) luôn đi qua điểm A(0;4) với mọi giá trị của m. b) Tìm tất cả giá trị của m để đường thẳng (d) cắt parabol (P): y = x² tại hai điểm phân biệt có hoành độ lần lượt là x1, x2 sao cho (x1 + 2×2)(x2 + 2×1) = 14. Hãy cố gắng và làm bài thật tốt, chúc các em đạt kết quả cao trong kỳ thi sắp tới! Cảm ơn quý thầy cô và các em đã tham gia.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 26 tháng 12 năm 2021.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình : + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau. Chứng minh trong 16 số trên có ít nhất một số là số nguyên tố. + Cho 8045 điểm trên một mặt phẳng sao cho cứ 3 điểm bất kì thì tạo thành một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng luôn có thể có ít nhất 2012 điểm nằm trong tam giác hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1.
Đề thi HSG Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
Đề thi HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian giao đề).
Đề thi HSG thành phố Toán 9 năm 2021 - 2022 phòng GDĐT Đà Lạt - Lâm Đồng
Đề thi HSG thành phố Toán 9 năm 2021 – 2022 phòng GD&ĐT Đà Lạt – Lâm Đồng gồm 02 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Ba ngày 14 tháng 12 năm 2021.