Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các dạng tích phân hàm ẩn điển hình - Đặng Việt Đông

Tích phân hàm ẩn là một dạng toán vận dụng cao (VDC, nâng cao, khó …) thường gặp trong các đề thi thử THPT Quốc gia 2020 môn Toán, nhưng dạng toán này lại ít được đề cập đến trong sách giáo khoa Giải tích 12, điều này đã gây không ít khó khăn cho học sinh trong quá trình định hướng và tìm lời giải. giới thiệu đến thầy, cô và các em học sinh tài liệu chuyên đề các dạng tích phân hàm ẩn điển hình do thầy Đặng Việt Đông biên soạn. Tài liệu gồm 57 trang, hướng dẫn giải một số bài toán tích phân hàm ẩn thường gặp trong đề thi trắc nghiệm Toán 12 và đề thi thử THPT Quốc gia 2020 môn Toán. Khái quát nội dung chuyên đề các dạng tích phân hàm ẩn điển hình – Đặng Việt Đông: DẠNG 1 : ÁP DỤNG CÁC QUY TẮC VÀ ĐẠO HÀM CỦA HÀM SỐ HỢP. 1. Nếu $u = u(x)$ và $v = v(x)$ thì $(uv)’ = u’v + uv’.$ Nếu $\left[ {f(x).g(x)} \right]’ = h(x)$ thì $f(x).g(x) = \int h (x)dx.$ 2. Nếu $u = u(x)$ và $v = v(x)$ thì $\left( {\frac{u}{v}} \right)’ = \frac{{u’v – uv’}}{{{v^2}}}$ với $v \ne 0.$ Nếu $\left( {\frac{{f(x)}}{{g(x)}}} \right)’ = h(x)$ thì $\frac{{f(x)}}{{g(x)}} = \int h (x)dx.$ 3. Nếu $u = u(x)$ thì $\left( {\sqrt u } \right)’ = \frac{{u’}}{{2\sqrt u }}$ với $u > 0.$ Nếu $\left[ {\sqrt {f(x)} } \right]’ = h(x)$ thì $\sqrt {f(x)} = \int h (x)dx.$ 4. Nếu $u = u(x)$ thì $\left( {{e^u}} \right)’ = u’.{e^u}.$ Nếu $\left( {{e^{f(x)}}} \right)’ = g(x)$ thì ${e^{f(x)}} = \int g (x)dx.$ 5. Nếu $u = u(x)$ nhận giá trị dương trên K thì $[\ln u]’ = \frac{{u’}}{u}$ trên $K.$ Nếu $\left[ {\ln (f(x))} \right]’ = g(x)$ thì $\ln (f(x)) = \int g (x)dx.$ DẠNG 2 : PHƯƠNG PHÁP ĐỔI BIẾN. TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 1: Cho $\int_a^b {u’} (x).f[u(x)]dx$, tính $\int_a^b f (x)dx.$ Hoặc cho $\int_a^b f (x)dx$, tính $\int_a^b {u’} (x).f[u(x)]dx.$ TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 2: Tính $\int_a^b f (x)dx$, biết hàm số $f(x)$ thỏa mãn $A.f(x) + B.u’.f(u) + C.f(a + b – x) = g(x).$ TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 3: Lần lượt đặt $t = u(x)$ và $t = v(x)$ để giải hệ phương trình hai ẩn, suy ra hàm số $f(x).$ TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 4: Cho $f(x).f(a + b – x) = {k^2}$, khi đó $I = \int_a^b {\frac{{dx}}{{k + f(x)}}} = \frac{{b – a}}{{2k}}.$ TÍCH PHÂN HÀM ẨN ĐỔI BIẾN DẠNG 5: Cho hàm số $y = f(x)$ thỏa mãn $g[f(x)] = x$ và $g(t)$ là hàm đơn điệu. Hãy tính tích phân $I = \int_a^b f (x)dx.$ DẠNG 3 : PHƯƠNG PHÁP TỪNG PHẦN. Tích phân từng phần với hàm ẩn thường áp dụng cho những bài toán mà giả thiết hoặc kết luận có một trong các tích phân sau: $\int_a^b u (x).f'(x)dx$ hoặc $\int_a^b {u’} (x).f(x)dx.$ DẠNG 4 : PHƯƠNG TRÌNH VI PHÂN TUYẾN TÍNH CẤP 1. Bài toán tích phân liên quan đến biểu thức $f'(x) + p(x).f(x) = h(x).$ [ads] Xem thêm : + Chuyên đề tích phân hàm ẩn – Hoàng Phi Hùng + Bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải + Hướng dẫn giải bài toán tích phân hàm ẩn – Nguyễn Hoàng Việt + Bài tập trắc nghiệm tích phân hàm ẩn có đáp án và lời giải chi tiết – Đặng Việt Đông

Nguồn: toanmath.com

Đọc Sách

Chuyên đề cơ bản ứng dụng tích phân trong hình học ôn thi TN THPT môn Toán
Tài liệu gồm 44 trang, được biên soạn bởi thầy giáo Lê Bá Bảo (giáo viên Toán trường THPT Đặng Huy Trứ, tỉnh Thừa Thiên Huế), hướng dẫn giải các dạng toán cơ bản chuyên đề ứng dụng tích phân trong hình học trong chương trình môn Toán lớp 12, hướng đến kỳ thi tốt nghiệp THPT môn Toán; tài liệu phù hợp với các em học sinh lớp 12 mất gốc Toán. Chủ đề : ỨNG DỤNG TÍCH PHÂN TRONG HÌNH HỌC: TÍNH DIỆN TÍCH HÌNH PHẲNG. I. TÓM TẮT LÝ THUYẾT. Bài toán 1: Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số f x liên tục trên đoạn a b trục hoành và hai đường thẳng x a x b được tính theo công thức: d b a S f x x (1). Bài toán 2: Diện tích S của hình phẳng giới hạn bởi các đồ thị của hàm số f x g x liên tục trên a b và hai đường thẳng x a x b được tính theo công thức: d b a S f x g x x (2). II. BÀI TẬP TRẮC NGHIỆM MINH HỌA. III. LỜI GIẢI CHI TIẾT. Chủ đề : ỨNG DỤNG TÍCH PHÂN TRONG HÌNH HỌC: TÍNH THỂ TÍCH KHỐI TRÒN XOAY. I. TÓM TẮT LÝ THUYẾT. Một hình phẳng quay quanh một trục nào đó tạo nên một khối tròn xoay. Dạng 1: (Hình phẳng quay quanh Ox) Cho hình phẳng được giới hạn bởi đồ thị hàm số y f x liên tục trên a b trục Ox và hai đường thẳng x a x b quanh trục Ox ta được khối tròn xoay có thể tích là: d 2 b x a V f x x (3). Dạng 2: Thể tích khối tròn xoay có được khi quay nhiều đồ thị hàm số quanh một trục. Ta tiến hành chia phần thể tích V thành các phần thể tích thành phần 1 2 V V mà mỗi phần được tính bằng các công thức đã cho. II. BÀI TẬP TRẮC NGHIỆM MINH HỌA. III. LỜI GIẢI CHI TIẾT.
Chuyên đề các dạng tích phân hàm ẩn điển hình mức độ VD - VDC
Tài liệu gồm 84 trang, được biên soạn bởi thầy giáo Đặng Việt Đông (giáo viên Toán trường THPT Nho Quan A, tỉnh Ninh Bình), hướng dẫn phương pháp giải các dạng bài tập tích phân hàm ẩn điển hình mức độ vận dụng và vận dụng cao (VD – VDC), giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 3: Nguyên Hàm – Tích Phân Và Ứng Dụng. Dạng 1 . Áp dụng các quy tắc và đạo hàm của hàm số hợp trang. + Quy tắc đạo hàm tích 3. + Quy tắc đạo hàm thương 7. + Áp dụng công thức đạo hàm của hàm chứa căn 15. + Áp dụng công thức đạo hàm của hàm mũ 18. + Áp dụng công thức đạo hàm của hàm lôgarit 19. + Áp dụng các công thức đạo hàm khác 21. Dạng 2 . Phương pháp đổi biến 22. + Tích phân hàm ẩn đổi biến dạng 1 22. + Tích phân hàm ẩn đổi biến dạng 2 28. + Tích phân hàm ẩn đổi biến dạng 3 39. + Tích phân hàm ẩn đổi biến dạng 4 49. + Tích phân hàm ẩn đổi biến dạng 5 51. + Tích phân hàm ẩn đổi biến dạng 6 53. Dạng 3 . Phương pháp từng phần 55. + Trường hợp riêng 68. Dạng 4 . Phương trình vi phân tuyến tính cấp 1 78.
Chủ đề nguyên hàm, tích phân và ứng dụng ôn thi tốt nghiệp THPT môn Toán
Tài liệu gồm 398 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, tổng hợp lý thuyết trọng tâm, ví dụ minh họa và các dạng bài tập chủ đề nguyên hàm, tích phân và ứng dụng ôn thi tốt nghiệp THPT môn Toán, có đáp án và lời giải chi tiết. DẠNG 1 Các phương pháp tính nguyên hàm cơ bản. DẠNG 2 Các phương pháp tính tích phân cơ bản. DẠNG 3 Tích phân cho bởi nhiều hàm. DẠNG 4 Kết hợp đổi biến, từng phần tính tích phân. DẠNG 5 Tích phân hàm ẩn phần 1. DẠNG 6 Tích phân hàm ẩn phần 2. DẠNG 7 Tích phân đặc biệt kết hợp với tích phân hàm ẩn. DẠNG 8 Tính tích phân bằng phương pháp vi phân. DẠNG 9 Tính tích phân dựa vào đồ thị. DẠNG 10.1 Ứng dụng tích phân tích diện tích hình phẳng. DẠNG 10.2 Ứng dụng tích phân tính diện tích hình phẳng. DẠNG 11 Toán thực tế liên quan đến diện tích hình phẳng. DẠNG 12 Ứng dụng tích phân vào bài toán chuyển động. DẠNG 13 Tích phân trong đề thi của Bộ Giáo dục và Đào tạo.
Một số bài toán chọn lọc về tích phân
Tài liệu gồm 16 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề một số bài toán chọn lọc về tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3.