Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Hàm số lũy thừa, hàm số mũ và hàm số lôgarit - Nguyễn Tài Chung

Tài liệu gồm 96 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, tổng hợp tóm tắt lý thuyết, phương pháp giải toán và bài tập trắc nghiệm có đáp án chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit, hỗ trợ học sinh trong quá trình học tập chương trình Giải tích 12 chương 1. BÀI 1 . LŨY THỪA. Dạng 1. Rút gọn biểu thức. Dạng 2. Chứng minh đẳng thức. Dạng 3. Chứng minh bất đẳng thức. Dạng 4. Các bài tập sử dụng công thức lãi kép. Dạng 5. Một số bài tập khác. BÀI 2 . LÔGARIT. Dạng 6. Tính toán, rút gọn về lôgarit. Dạng 7. Chứng minh đẳng thức. Dạng 8. So sánh hai số ở dạng lôgarit. Bất đẳng thức chứa lôgarit. Dạng 9. Bài tập ứng dụng lôgarit thập phân. Dạng 10. Bài tập ứng dụng công thức lãi kép liên tục. Dạng 11. Biểu diễn lôgarit theo các lôgarit cho trước. BÀI 3 . HÀM SỐ MŨ, HÀM SỐ LÔGARIT VÀ HÀM SỐ LŨY THỪA. Dạng 12. Tìm tập xác định của hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 13. Khảo sát và vẽ đồ thị hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 14. Chứng minh đẳng thức hàm. Dạng 15. Xét tính chẵn, lẻ của hàm số mũ, lôgarit, lũy thừa. Dạng 16. Tính giới hạn. Dạng 17. Tính đạo hàm. Dạng 18. Chứng minh đẳng thức chứa đạo hàm. Dạng 19. Chứng minh đẳng thức chứa vi phân. Dạng 20. Xét tính đơn điệu của hàm số mũ, hàm số lôgarit, hàm số lũy thừa. Dạng 21. Tìm giá trị lớn nhất, giá trị bé nhất của hàm số mũ, hàm số lôgarit. Dạng 22. Một số bất đẳng thức được chứng bằng cách khảo sát hàm số mũ, hàm số lôgarit. Dạng 23. Chứng minh bất đẳng thức bằng cách lôgarit hóa. Dạng 24. Bất đẳng thức Becnuli. Dạng 25. Dùng đạo hàm để tính giới hạn dạng 0/0: limf(x) khi x→a. BÀI 4 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH MŨ. Dạng 26. Đưa về cùng một cơ số. Dạng 27. Đặt ẩn phụ. Dạng 28. Phương pháp hàm số. Dạng 29. Phương trình dạng hiệu các hàm đơn điệu. Dạng 30. Phép đặt ẩn phụ bậc hai u = (ab)^x/(A.a^2x + B.b^2x). Dạng 31. Phương pháp đánh giá hai vế (phương pháp bất đẳng thức). Dạng 32. Phương trình, bất phương trình mũ chứa tham số. Dạng 33. Phương trình đưa được về dạng tích. BÀI 5 . PHƯƠNG TRÌNH, BẤT PHƯƠNG TRÌNH LÔGARIT. Dạng 34. Đưa về cùng một cơ số. Dạng 35. Phương pháp hàm số. Dạng 36. Phương trình dạng hiệu các hàm đơn điệu. Dạng 37. Phương trình loga f(x) = logb g(x) với a khác b. Dạng 38. Sử dụng công thức đổi cơ số, phương pháp logarit hóa. Dạng 39. Sử dụng công thức a logb c = c logb a. Dạng 40. Phương pháp đánh giá hai vế (phương pháp bất đẳng thức). Dạng 41. Phương trình, bất phương trình lôgarit chứa tham số. BÀI 6 . HỆ MŨ VÀ LÔGARIT. Dạng 42. Một số hệ giải được bằng phương pháp thế. Dạng 43. Hệ mũ, lôgarit đối xứng loại 1, đối xứng loại 2. Dạng 44. Hệ có yếu tố đẳng cấp. Dạng 45. Một số hệ không mẫu mực. Dạng 46. Hệ có tham số. Dạng 47. Giải hệ bằng cách sử dụng tính đơn điệu của hàm số.

Nguồn: toanmath.com

Đọc Sách

Tuyển tập các câu hỏi VD - VDC mũ - logarit hay và khó
Tài liệu gồm 60 trang, được biên soạn bởi nhóm tác giả Tạp Chí Và Tư Liệu Toán Học, tuyển chọn 600 câu hỏi và bài toán mức độ vận dụng – vận dụng cao chủ đề mũ và logarit từ các đề thi thử tốt nghiệp THPT môn Toán; giúp học sinh ôn tập để chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán, ôn thi học sinh giỏi Toán THPT. Trích dẫn tài liệu tuyển tập các câu hỏi VD – VDC mũ – logarit hay và khó: + Cho hàm số f(x) = (2 + √3)^x − (2 − √3)^x, có tất cả bao nhiêu giá trị nguyên của tham số m ∈ [−2019; 2020] để bất phương trình f(2019^x + 2020x − m) + f(2020^x − 2019x − m) ≤ 0 có nghiệm trên đoạn [0; 2020]. + Cho hàm số f(x) là hàm đa thức hệ số thực, có đồ thị hàm số y = f(x) và y = f'(x) như hình vẽ dưới. Biết rằng phương trình f(x) = me^x có hai nghiệm thực phân biệt thuộc đoạn [0;2] khi và chỉ khi m thuộc nửa khoảng [a;b). Giá trị của biểu thức a + b gần với giá trị nào dưới đây nhất? [ads] + Gọi A, B là các điểm lần lượt thuộc đồ thị các hàm số y = e^x và y = e^−x sao cho tam giác OAB nhận điểm M (1; 1) làm trọng tâm. Khi đó tổng các giá trị của hoành độ và tung độ điểm A gần với giá trị nào sau đây nhất? Xem thêm : Tuyển tập các bài toán mũ và logarit hay và đặc sắc – Nguyễn Xuân Nhật
Tổng ôn tập TN THPT 2020 môn Toán Phương trình - bất phương trình - GTLN - GTNN mũ và logarit
Tài liệu gồm 96 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm các chuyên đề: phương trình và bất phương trình mũ và logarit, GTLN – GTNN (max – min) mũ và logarit; có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Phương trình – bất phương trình – GTLN – GTNN mũ và logarit: A. PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH MŨ VÀ LOGARIT 1. Phương pháp đưa về cùng cơ số. + Phương trình và bất phương trình mũ cơ bản. + Phương trình logarit và bất phương trình logarit cơ bản. 2. Phương pháp đặt ẩn phụ. + Đặt ẩn phụ cho phương trình mũ. + Đặt ẩn phụ cho phương trình logarit. 3. Phương pháp hàm số. + Cơ sở lý thuyết và vận dụng cơ sở lý thuyết để tìm hướng giải. + Một số loại toán cơ bản thường gặp khi sử dụng đơn điệu hàm số. [ads] B. BÀI TOÁN CHỨA THAM SỐ + Dạng 1. Tìm m để f(t;m) = 0 có nghiệm (hoặc có k nghiệm) trên D. + Dạng 2. Tìm m để bất phương trình f(t;m) ≥ 0 hoặc f(t;m) ≤ 0 có nghiệm trên miền D. C. GIÁ TRỊ LỚN NHẤT VÀ GIÁ TRỊ NHỎ NHẤT MŨ VÀ LOGARIT
Tổng ôn tập TN THPT 2020 môn Toán Hàm số lũy thừa - hàm số mũ - hàm số logarit
Tài liệu gồm 60 trang, được tổng hợp và biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề hàm số lũy thừa – hàm số mũ – hàm số logarit, có đáp án và lời giải chi tiết, giúp học sinh tổng ôn kiến thức để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán. Khái quát nội dung tài liệu tổng ôn tập TN THPT 2020 môn Toán: Hàm số lũy thừa – hàm số mũ – hàm số logarit: A. Biến đổi công thức B. Hàm số lũy thừa – mũ – logarit + Hàm lũy thừa. + Hàm số mũ. + Hàm số logarit. + Đồ thị hàm số mũ. + Đồ thị hàm số logarit. [ads] C. Bài toán thực tế 1. Lãi đơn. 2. Lãi kép. 3. Bài toán tăng trưởng dân số. 4. Vay vốn trả góp. 5. Tiền gửi hàng tháng. D. Phương trình – bất phương trình cơ bản 1. Đạo hàm của hàm số mũ và lôgarit. 2. Phương trình mũ – lôgarit. 3. Bất phương trình mũ và lôgarit. 4. Các phương pháp giải phương trình, bất phương trình mũ và lôgarit.
Bài toán logarit qua nhiều góc nhìn
Tài liệu gồm có 90 trang được biên soạn bởi các tác giả: Minh Chung và Dương Đình Tuấn, tuyển chọn 60 bài toán trắc nghiệm logarit có đáp án và lời giải chi tiết. Đây không phải là tổng hợp những bài toán logarit hay nhất mà nó bao gồm những bài toán logarit mang đến những tư duy hay nhất. Lời giải trong tài liệu ít nhiều có đôi chỗ không đúng với thuần tự luận hay những lí thuyết SGK vì vậy các bạn chỉ nên đọc tham khảo là chính. Trích dẫn tài liệu bài toán logarit qua nhiều góc nhìn: + Trong các nghiệm (x;y) thỏa mãn bất phương trình log x^2 + 2y^2 (2x + y) ≥ 1. Giá trị lớn nhất của biểu thức T = 2x + y bằng? + Cho các số thực dương a, b, c thỏa mãn 5log22a + 16log22b + 27log22c = 1. Giá trị lớn nhất của S = ∑log2a.log2b bằng? [ads] + Cho phương trình √(1 – m + log2x) + √(4m + 2 – log2x) = m với m là tham số thực. Biết m = m0 là giá trị để phương trình trên có đúng một nghiệm thực. Khẳng định nào dưới đây đúng? + Lấy đạo hàm cấp 2019 của hàm số f(x) = x^2.e^x ta được hàm số g(x), tính tổng các nghiệm của phương trình g(x) = 0. + Có bao nhiêu giá trị nguyên dương của m nhỏ hơn 2018 để tồn tại duy nhất cặp số (x;y) thỏa mãn log2(x + y) + logm(x – y) = 1 và x^2 – y^2 = m.