Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề so sánh phân số

Tài liệu gồm 29 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề so sánh phân số, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . So sánh hai phân số cùng mẫu dương. Trong hai phân số có cùng mẫu dương, phân số nào có tử lớn hơn thì lớn hơn. Dạng 2 . So sánh hai phân số khác mẫu. Cách 1. Quy đồng mẫu số hai phân số rồi so sánh các tử số của chúng. – Bước 1: Quy đồng mẫu số của hai phân số (đưa các phân số về cùng mẫu số). – Bước 2: So sánh tử số của hai phân số cùng mẫu số đã quy đồng. Trong hai phân số có cùng mẫu số: + Phân số nào có tử số nhỏ hơn thì nhỏ hơn. + Phân số nào có tử số lớn hơn thì lớn hơn. Cách 2. Quy đồng tử số hai phân số rồi so sánh các mẫu số của chúng. – Bước 1: Quy đồng tử số (đưa về cùng tử số). + Lấy tử số và mẫu số của phân số thứ nhất nhân tử số của phân số thứ hai. + Lấy tử số và mẫu số của phân số thứ hai nhân tử số của phân số thứ nhất. – Bước 2: So sánh mẫu số của hai phân số đã quy đồng tử số. Trong hai phân số có cùng tử số: + Phân số nào có mẫu số nhỏ hơn thì lớn hơn. + Phân số nào có mẫu số lớn hơn thì nhỏ hơn. Dạng 3 . So sánh qua số trung gian. – Khi so sánh hai hay nhiều phân số, việc quy đồng đưa về cùng một mẫu số dương để so sánh tử số nhiều khi khá khó khăn, do đó, ta có thể chọn một phân số trung gian, dựa vào phân số trung gian này, ta sẽ so sánh được hai phân số ban đầu. * Dạng 3.1: So sánh qua số 0. * Dạng 3.2: So sánh qua số 1. * Dạng 3.3: So sánh qua một phân số trung gian phù hợp. Dạng 4 . So sánh qua phần bù (hay phần thiếu). So sánh qua phần bù áp dụng để so sánh hai phân số nhỏ hơn 1. Với phân số 1 a b thì 1 a b a b b được gọi là phần bù đến đơn vị của phân số a b. Trong hai phân số có phần bù tới đơn vị khác nhau, phân số nào có phần bù nhỏ hơn thì phân số đó lớn hơn. Dạng 5 . So sánh phần hơn (phần thừa) với đơn vị của các phân số. * Phần hơn với đơn vị của phân số là hiệu giữa phân số đó với 1. * Sử dụng cách so sánh bằng phần hơn khi: – Nhận thấy tất cả các phân số đều có tử số lớn hơn mẫu số (phân số lớn hơn 1) và hiệu của tử số với mẫu số đều bằng nhau hoặc nhỏ thì ta tìm phần hơn với 1. – Nhận thấy cả hai phân số đều có tử số lớn hơn mẩu số và nếu lấy tử số chia cho mầu số ở cả hai phân số thì có thương bằng nhau. – Nhận thấy cả hai phân số đều có tử số bé hơn mẫu số và nếu lấy mẫu số chia cho tử số ở cả hai phân số thì có thương bằng nhau. Dạng 6 . So sánh một tổng hoặc một tích nhiều phân số với một phân số. Bước 1: Tìm số chữ số của tổng. Bước 2: Tách số cố định thành tổng các chữ số. Bước 3: So sánh từng số của tổng với các chữ số vừa tách. Bước 4: Kết luận. Dạng 7 . Dạng bài tập phối hợp nhiều phương pháp. * Phương pháp so sánh hai phân số bằng cách “nhân thêm cùng một số vào hai phân số”: Ta sử dụng phương pháp nhân thêm cùng một số vào hai phân số khi nhận thấy tử số của hai phân số đều bé hơn mẫu số và nểu lấy mẫu số chia cho tử số thì có thương và số dư bằng nhau. Khi đó ta nhân cả hai phân số với cùng một số tự nhiên (là phần nguyên của thương) để đưa về dạng so sánh “phần bù”.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm điểm và đường thẳng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề điểm và đường thẳng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Điểm thuộc đường thẳng. M là một điểm của đường thẳng d hay M thuộc đường thẳng d (hoặc: M nằm trên d, d đi qua M, d chứa M). Kí hiệu M d. N không là điểm của đường thẳng d hay N không thuộc đường thẳng d. Kí hiệu N d. 2. Ba điểm thẳng hàng. Với A và B là hai điểm phân biệt. Có một đường thẳng và chỉ một đường thẳng đi qua A và B. Kí hiệu là đường thẳng AB hay đường thẳng BA. Cho C là điểm khác A và B. Nếu C AB thì ba điểm A B C thẳng hàng. Ngược lại, nếu C AB thì ba điểm A B C không thẳng hàng. 3. Vị trí tương đối của hai đường thẳng. Với 1 d và 2 d là hai đường thẳng tùy ý. 1 d và 2 d song song với nhau, kí hiệu 1 2 d d nếu chúng không có điểm chung. 1 d và 2 d cắt nhau nếu chúng có một điểm chung. Điểm chung đó được gọi là giao điểm của 1 d và 2 d. Nếu 1 d và 2 d có từ hai điểm chung trở lên thì 1 d và 2 d là hai đường thẳng trùng nhau (mỗi điểm thuộc một trong hai đường thẳng đều là điểm chung của hai đường thẳng). 4. Các dạng toán thường gặp. Dạng 1 : Quan hệ giữa điểm và đường thẳng. Dạng 2 : Vị trí tương đối giữa hai đường thẳng. B. BÀI TẬP TRẮC NGHIỆM
Tóm tắt lý thuyết và bài tập trắc nghiệm tỉ số và tỉ số phần trăm
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề một số bài toán về tỉ số và tỉ số phần trăm, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Tỉ số của hai số: Thương trong phép chia số a cho số b b 0 gọi là tỉ số của a và b. Tỉ số của a và b kí hiệu là a : b (cũng kí hiệu là a / b). Chú ý: + Phân số a b thì cả a và b phải là các số nguyên (b khác 0). + Tỉ số a b thì cả a và b có thể là các số nguyên, phân số, hỗn số, số thập phân. + Ta thường dùng khái niệm tỉ số khi nói về thương của hai đại lượng cùng loại và cùng đơn vị đo. 2. Tỉ số phần trăm: Ta thường dùng tỉ số dưới dạng tỉ số phần trăm, tức là tỉ số có dạng 100 a kí hiệu a%. Muốn tìm tỉ số phần trăm của hai số a và b, ta nhân a với 100 rồi chia cho b và viết kí hiệu % vào bên phải kết quả tìm được: 100 a b. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm làm tròn và ước lượng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề làm tròn và ước lượng, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Làm tròn. Để làm tròn một số thập phân dương đến một hàng nào đấy (gọi là hàng làm tròn), ta làm như sau: – Đối với chữ số làm tròn: + Giữ nguyên nếu chữ số ngay bên phải nhỏ hơn 5. + Tăng một đơn vị nếu chữ số ngay bên phải lớn hơn hay bằng 5. – Đối với các chữ số sau hàng làm tròn: + Bỏ đi nếu ở phần thập phân. + Thay bởi các chữ số 0 nếu ở phần số nguyên. 2. Ước lượng. – Khi thực hiện một dãy phép tính hoặc khi đo, đếm các sự vật, trong nhiều trường hợp ta không cần tính chính xác kết quả mà chỉ cần ước lượng kết quả, tức là chỉ ra một giá trị gần sát với kết quả chính xác. Có thể ước lượng kết quả bằng 1 trong những cách sau: + Cắt bỏ bớt một hay nhiều chữ số ở phần thập phân của kết quả. + Làm tròn kết quả tới một hàng thích hợp. + Làm tròn các số hạng thừa số, số bị chia, số chia có trong dãy phép tính cần thực hiện. B. BÀI TẬP TRẮC NGHIỆM I – MỨC ĐỘ NHẬN BIẾT. II – MỨC ĐỘ THÔNG HIỂU. III – MỨC ĐỘ VẬN DỤNG. IV – MỨC ĐỘ VẬN DỤNG CAO.
Tóm tắt lý thuyết và bài tập trắc nghiệm tính toán với số thập phân
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm chuyên đề tính toán với số thập phân, các bài toán được chọn lọc và phân loại theo các dạng toán, được sắp xếp theo độ khó từ cơ bản đến nâng cao, có đáp án và hướng dẫn giải chi tiết, giúp các em tham khảo khi học chương trình Toán 6. A. TÓM TẮT LÝ THUYẾT 1. Cộng, trừ hai số thập phân. Để thực hiện các phép tính cộng trừ các số thập phân, ta áp dụng các quy tắc dấu như khi thực hiện các phép tính cộng trừ số nguyên. – Muốn cộng hai số thập phân âm ta cộng hai số đối của chúng rồi thêm dấu trừ đằng trước kết quả. – Muốn cộng hai số thập phân trái dấu, ta làm như sau: + Nếu số dương lớn hơn hay bằng số đối của số âm thì ta lấy số dương trừ đi số đối của số âm a b b a với 0 a b. + Nếu số dương nhỏ hơn số đối của số âm thì ta lấy sốđối của số âm trừ đi số dương rồi đặt dấu trừ trước kết quả. – Muốn số thập phân a cho số thập phân b ta cộng a với số đối của b. Chú ý: – Tổng của hai số thập phân cùng dấu luôn cùng dấu với hai số thập phân đó. – Khi cộng hai số thập phân trái dấu: + Nếu số dương lớn hơn số đối của số âm thì ta có tổng dương. + Nếu số dương nhỏ hơn số âm thì ta có tổng âm. 2. Nhân, chia hai số thập phân. Muốn nhân hai số thập phân dương có có nhiều chữ số thập phân ta làm như sau: – Bỏ dấu phẩy rồi nhân như hai số tự nhiên. – Đếm xem trong phần thập phân ở cả hai thừa số có tất cả bao nhiêu chữ số rồi dùng dấu phẩy tách ở tích ra bấy nhiêu chữ số từ phải sang trái. – Nhân hai số cùng dấu a b a b với a b 0. – Nhân hai số khác dấu a b a b a b với a b 0. Muốn chia hai số thập phân dương có có nhiều chữ số thập phân ta làm như sau: – Đếm xem có bao nhiêu chữ số ở phần thập phân số thì chuyển dấu phẩy ở số bị chia ở số bị chia sang phải bấy nhiêu chữ số. Nếu thiếu bao nhiêu chữ số thì ta thêm bấy nhiêu chữ số 0. – Bỏ dấu phẩy ở số chia rồi thực hiện phép chia như chia số thập phân cho số tự nhiên. – Chia hai số cùng dấu: a b a b với a b 0. – Nhân hai số khác dấu: a b a b a b với a b 0. 3. Các dạng toán thường gặp. Dạng 1: Thực hiện phép tính. Phương pháp: Sử dụng quy tắc các phép tính để tính. Dạng 2: Tìm x. Phương pháp: Sử dụng quy tắc chuyển vế, tính chât của đẳng thức để tìm. B. BÀI TẬP TRẮC NGHIỆM DẠNG 1: THỰC HIỆN PHÉP TÍNH. DẠNG 2: TÌM X.