Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề cuối kỳ 2 Toán 12 năm 2021 - 2022 trường THPT Nguyễn Gia Thiều - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra định kì cuối học kỳ 2 môn Toán 12 năm học 2021 – 2022 trường THPT Nguyễn Gia Thiều, quận Long Biên, thành phố Hà Nội; đề thi mã đề GỐC gồm 06 trang với 50 câu hỏi và bài toán dạng trắc nghiệm khách quan, thời gian học sinh làm bài thi là 90 phút (không kể thời gian giao đề); kỳ thi được diễn ra vào ngày 16 tháng 04 năm 2022. Trích dẫn đề cuối kỳ 2 Toán 12 năm 2021 – 2022 trường THPT Nguyễn Gia Thiều – Hà Nội : + Trong không gian Oxyz cho hai điểm A B 3 2 6 0 1 0 và mặt cầu 2 2 2 1 2 3 25 S x y z. Mặt phẳng 2 0 P ax by cz đi qua AB và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Biểu thức T a b c có giá trị bằng? + Hình phẳng (H) được giới hạn bởi đồ thị (C) của hàm đa thức bậc ba và parabol (P) có trục đối xứng vuông góc với trục hoành. Phần tô đậm của hình vẽ có diện tích bằng? + Gọi S là tập hợp tất cả các số phức z sao cho số phức 1 w z z có phần thực bằng 1 12. Xét các số phức 1 2 z z S thỏa mãn z z 1 2 6 giá trị nhỏ nhất của 2 2 1 2 P z z 10 10 bằng?

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trưng Vương - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Trưng Vương, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trưng Vương – TP HCM : + Trong không gian Oxyz, cho hai điểm A M và đường thẳng. Gọi u a b là một vectơ chỉ phương của trình đường thẳng đi qua M vuông góc với đường thẳng d sao cho khoảng cách từ A đến đường thẳng là nhỏ nhất. Tính 2 2 a b. + Trên mặt phẳng toạ độ Oxy, gọi A B C lần lượt là điểm biểu diễn các số phức z iz và z iz. Biết tam giác ABC có diện tích bằng 8. Tính môđun của số phức z. + Trong không gian Oxyz, mặt cầu S có tâm nằm trên mặt phẳng và tiếp xúc với mặt phẳng Oxy tại điểm H(-1;1;0). Tính bán kính R của mặt cầu.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Trường Chinh - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Trường Chinh, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Trường Chinh – TP HCM : + Tính thể tích V của phần vật thể giới hạn bởi hai mặt phẳng x = 1 và x = 3 , biết rằng khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x thì được thiết diện là một hình thoi có độ dài hai đường chéo là 6x và 2 3 2 x. + Cho (H) là hình phẳng giới hạn bởi đường cong y x và nửa đường tròn có phương trình (phần tô đậm trong hình vẽ). Diện tích của (H) bằng? + Trong không gian Oxyz, cho ba điểm. Tìm m n để A B C thẳng hàng.
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường Trương Vĩnh Ký - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường TH – THCS – THPT Trương Vĩnh Ký – TP HCM : + Cho hình (H) giới hạn tạo bởi đồ thị hàm số y x x 3, trục hoành và hai đường x 1 và x 2. Quay hình (H) quanh trục Ox. Tính thể tích khối tròn xoay được tạo thành. + Trong không gian Oxyz, viết phương trình tham số và phương trình chính tắc của đường thẳng đi qua điểm A(1;2;3) và có vectơ chỉ phương u. + Trong không gian Oxyz, viết phương trình mặt cầu (S) có tâm I(1;2;3) và bán kính bằng độ dài đoạn thẳng AB với A(1;-1;2) và B(2;1;4).
Đề thi học kì 2 Toán 12 năm 2019 - 2020 trường THPT Võ Văn Kiệt - TP HCM
giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 12 đề thi học kì 2 Toán 12 năm học 2019 – 2020 trường THPT Võ Văn Kiệt, thành phố Hồ Chí Minh; đề thi có đáp án / lời giải chi tiết. Trích dẫn đề thi học kì 2 Toán 12 năm 2019 – 2020 trường THPT Võ Văn Kiệt – TP HCM : + Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;0;2),  B(3;1;-2) và mặt phẳng (P) có phương trình x y z 1 0. Hãy tìm điểm M a b c thuộc mặt phẳng (P) sao cho 3 2 MA MB đạt giá trị nhỏ nhất. + Điểm biểu diễn số phức: Cho A, B, C, D lần lượt là các điểm biểu diễn của các số phức 1 2 3 4 z 2 z 3 i z 2 2i z 1 i. Chọn kết luận đúng nhất: A. ABCD là chữ nhật B. ABCD là hình vuông. C. ABCD là hình bình hành D. ABCD là hình thoi. + Số nghiệm của phương trình 2 z z 2 0 trên tập số phức là?