Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán vào 10 lần 1 năm 2023 - 2024 phòng GDĐT Lương Tài - Bắc Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử môn Toán tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Lương Tài, tỉnh Bắc Ninh; đề thi hình thức 40% trắc nghiệm + 60% tự luận, thời gian làm bài 120 phút; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào thứ Năm ngày 06 tháng 04 năm 2023. Trích dẫn Đề thi thử Toán vào 10 lần 1 năm 2023 – 2024 phòng GD&ĐT Lương Tài – Bắc Ninh : + Tìm khẳng định sai? A. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì điểm đó cách đều hai tiếp điểm. B. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì tia kẻ từ tâm đường tròn và đi qua điểm đó là tia phân giác của góc tạo bởi hai bán kính đi qua hai tiếp điểm. C. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì đường thẳng đi qua hai tiếp điểm là đường trung trực của đoạn thẳng nối điểm đó với tâm đường tròn. D. Nếu hai tiếp tuyến của một đường tròn cắt nhau tại một điểm thì điểm đó, tâm của đường tròn và hai tiếp điểm cùng nằm trên một đường tròn. + Hưởng ứng ngày “Ngày sách và văn hóa đọc Việt Nam năm 2023”, một nhà sách đã có chương trình giảm giá cho tất cả loại sách. Bạn Nam đến mua một cuốn sách tham khảo môn Toán và một cuốn sách tham khảo môn Ngữ văn với tổng giá ghi trên hai quyển sách đó là 195000 đồng. Nhưng do quyển sách tham khảo môn Toán được giảm giá 20% và quyển sách tham khảo môn Ngữ văn được giảm giá 35% nên bạn Nam chỉ phải trả cho nhà sách 138000 đồng để mua hai quyển sách đó. Hỏi giá ghi trên mỗi quyển sách tham khảo đó là bao nhiêu? + Một tỉnh dự định làm đường điện từ điểm A trên bờ biển đến điểm B trên một hòn đảo, B cách bờ một khoảng BB’ = 2km, A cách B’ một khoảng AB’ = 3km (hình vẽ bên). Biết chi phí làm 1km đường điện trên bờ là 5 tỷ đồng, dưới nước là 13 tỷ đồng. Tìm vị trí điểm C trên đoạn bờ biển AB’ sao cho khi làm đường điện theo đường gấp khúc ACB thì chi phí thấp nhất (coi bờ biển là đường thẳng).

Nguồn: toanmath.com

Đọc Sách

Đề tuyển sinh môn Toán năm 2020 2021 trường ĐHSP TP HCM (chung)
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường ĐHSP TP HCM (chung) Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM (chung) Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM (chung) Đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung) là đề thi đặc biệt dành cho tất cả các thí sinh muốn thi vào các lớp chuyên Toán, Văn và Tiếng Anh. Kỳ thi dự kiến diễn ra vào ngày ... tháng 07 năm 2020. Một trong những câu hỏi trong đề tuyển sinh lớp 10 môn Toán năm 2020 - 2021 trường ĐHSP - TP HCM (chung) đề cập đến một lớp chuyên Anh của trường Trung học Thực hành. Trong đó, có bốn tổ học sinh với số học sinh trong mỗi tổ bằng nhau. Sau một bài kiểm tra Anh văn, một số bạn được điểm 8 và các bạn còn lại được điểm 9. Tổng số điểm của tất cả các bạn trong lớp là 336 điểm. Vấn đề đặt ra là cần tìm số học sinh trong lớp và số bạn được điểm 9 trong bài kiểm tra Anh văn. Ngoài ra, đề tuyển sinh còn đưa ra một bài toán liên quan đến việc cắt và gấp tấm tôn hình vuông để tạo thành một cái hộp không nắp. Đề bài yêu cầu tìm diện tích tấm tôn ban đầu, biết rằng hộp có thể tích là 128 cm. Đề thi cũng liên quan đến các khái niệm trong hình học như tam giác, đường tròn. Vấn đề được đặt ra là cần chứng minh rằng ba điểm B, M, E thẳng hàng trong một tam giác vuông cân. Đề tuyển sinh môn Toán năm 2020 - 2021 trường ĐHSP TP HCM mang đến cho các thí sinh những bài toán thú vị, phù hợp với trình độ học sinh và đòi hỏi sự tư duy logic, khả năng giải quyết vấn đề và kỹ năng tính toán chính xác.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Định
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 sở GD ĐT Bình Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GDĐT Bình Định Đề thi tuyển sinh môn Toán (chuyên) năm 2020-2021 sở GDĐT Bình Định Đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Bình Định đã được công bố, nhằm chọn lọc những học sinh có khả năng xuất sắc trong lĩnh vực Toán học. Kỳ thi sẽ diễn ra vào ngày thứ Bảy, 18 tháng 07 năm 2020. Trích dẫn một số câu hỏi trong đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020-2021 sở GD&ĐT Bình Định: Tìm các số nguyên tố p và q sao cho p3 + 3pq + q3 là một số chính phương. Chứng minh rằng đối với tam giác ABC cân tại A (với BAC < 60◦) nội tiếp đường tròn (O), ta có MA > MB + MC khi M là một điểm bất kì trên cung nhỏ BC. Đưa ra các chứng minh liên quan đến tứ giác AMDN, giao điểm của AB và ED, trung điểm của KL và tâm đường tròn ngoại tiếp tam giác AEF. Chứng minh rằng HI vuông góc với EF. Đề thi không chỉ đánh giá kiến thức Toán học của thí sinh mà còn đòi hỏi khả năng tư duy logic, suy luận và giải quyết vấn đề. Hy vọng rằng các thí sinh sẽ hoàn thành kỳ thi một cách xuất sắc và thành công.
Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên Bắc Giang
Nội dung Đề tuyển sinh môn Toán năm 2020 2021 trường THPT chuyên Bắc Giang Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang Đề thi tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang Đề thi tuyển sinh lớp 10 môn Toán năm 2020 - 2021 của trường THPT chuyên Bắc Giang là một bài thi khá thú vị và đầy thách thức. Đề thi gồm có 5 bài toán được biên soạn theo dạng đề tự luận, trong đó học sinh sẽ có thời gian làm bài trong 150 phút. Kỳ thi sẽ diễn ra vào thứ Bảy ngày 18 tháng 07 năm 2020. Trong đó, một trong những bài toán khá đặc biệt trong đề thi là bài toán liên quan đến parabol và đường thẳng. Học sinh sẽ phải tìm giá trị của tham số m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt sao cho biểu thức T = 1/(x1 + 1)^4 + 1/(x2 + 1)^4 đạt giá trị nhỏ nhất. Ngoài ra, còn có các bài toán khác về tam giác, đường tròn và hỗn hợp hình học khác. Đề thi này không chỉ đòi hỏi kiến thức vững chắc mà còn yêu cầu học sinh có khả năng suy luận logic, tư duy sáng tạo và khả năng giải quyết vấn đề. Với độ khó và đa dạng của các bài toán, đề thi tuyển sinh môn Toán năm 2020 - 2021 trường THPT chuyên Bắc Giang hứa hẹn sẽ là một bài thi đầy cạm bẫy đối với các thí sinh.
Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình
Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình Bản PDF - Nội dung bài viết Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình Đề tuyển sinh môn Toán (chuyên) năm 2020 2021 trường THPT chuyên Thái Bình Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình là bài thi dành cho các thí sinh muốn vào các lớp chuyên Toán và chuyên Tin học. Kỳ thi sẽ được tổ chức vào ngày ... tháng 07 năm 2020. Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2020 – 2021 trường THPT chuyên Thái Bình bao gồm các câu hỏi sau: Cho biểu thức \( P = (x - 2)^2x + 2\sqrt{x} - 1 \). Tìm số tự nhiên x lớn nhất có hai chữ số để P có giá trị là số chính phương. Cho \( P(x) \) là một đa thức có tất cả các hệ số đều là số nguyên thoả mãn \( P(0) = 21; P(1) = 7 \). Chứng minh rằng \( P(x) \) không có nghiệm nguyên. Giả sử phương trình \( 2x^2 + 2ax + 1 - b = 0 \) có hai nghiệm nguyên (với a, b lần lượt là tham số). Chứng minh rằng \( a^2 - b^2 + 2 \) là số nguyên và không chia hết cho 3. Đây là những câu hỏi được chọn lọc kỹ càng để đánh giá năng lực và kiến thức Toán của các thí sinh. Hy vọng rằng đề thi sẽ giúp các thí sinh thể hiện khả năng và đạt kết quả tốt trong kỳ thi tuyển sinh vào trường THPT chuyên Thái Bình.