Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Các bài toán về nguyên lý Dirichlet trong số học

Tài liệu gồm 26 trang, được trích đoạn từ cuốn sách Phân dạng và phương pháp giải toán số học và tổ hợp của tác giả Nguyễn Quốc Bảo, hướng dẫn giải các bài toán về nguyên lý Dirichlet trong số học, giúp học sinh ôn tập thi học sinh giỏi Toán bậc THCS và luyện thi vào lớp 10 môn Toán. A. KIẾN THỨC CẦN NHỚ 1. Giới thiệu nguyên lý Dirichlet. 2. Một số dạng áp dụng của nguyên lý Dirichlet. + Nguyên lý Dirichlet cơ bản. + Nguyên lý Dirichlet tổng quát. + Nguyên lí Dirichlet mở rộng. + Nguyên lí Dirichlet dạng tập hợp. 3. Phương pháp ứng dụng. B. CÁC DẠNG TOÁN THƯỜNG GẶP Dạng 1 : Chứng minh sự tồn tại chia hết. Thông thường ta coi m số tự nhiên đã cho là m “con thỏ”, các số dư trong phép chia các số tự nhiên đó cho n là những “lồng”; như vậy sẽ có n cái lồng: lồng i (0 ≤ i ≤ b) gồm những số tự nhiên đã cho chia cho n dư i. Dạng 2 : Bài toán về tính chất các phần tử trong tập hợp. Thông thường ta phải lập ra những tập hợp có tính chất cần thiết rồi sử dụng nguyên lí Dirichlet để chứng tỏ có hai phần tử thuộc hai tập hợp bằng nhau. Dạng 3 : Bài toán liên quan đến bảng ô vuông. Một bảng vuông kích thước n x n gồm n dòng, n cột và 2 đường chéo. Mỗi dòng, mỗi cột, mỗi đường chéo đều có n ô vuông. Một bảng các ô vuông kích thước m x n gồm m dòng và n cột. Dạng 4 : Bài toán liên quan đến thực tế. Khi chứng minh sự tồn tại một số đối tượng thỏa mãn điều kiện nào đó, ta thường sử dụng nguyên lí Dirichlet. Điều quan trọng nhất là phải xác định được “thỏ” và “lồng”. Dạng 5 : Bài toán liên quan đến sự sắp xếp. Các bài toán về sắp xếp chỗ, phân công việc không đòi hỏi nhiều về kiến thức và kĩ năng tính toán, chúng chủ yếu kết hợp suy luận lôgic để xét các khả năng có thể xảy ra với nguyên lí Dirichlet. Dạng 6 : Vận dụng nguyên lí Dirichlet vào các bài toán hình học. Một số các dạng toán hình học thường gặp: 1) Nếu trên một đoạn thẳng độ dài 1 đặt một số đoạn thẳng có tổng độ dài lớn hơn 1 thì có ít nhất hai trong số các đoạn thẳng đó có điểm chung. 2) Nếu trên đường tròn có bán kính 1 đặt một số cung có tổng độ dài lớn hơn 2π thì có ít nhất hai trong số các cung đó có điểm chung. 3) Trong một hình có diện tích S đặt một số hình có tổng diện tích lớn hơn S thì có ít nhất hai trong số các hình đó có điểm chung. C. BÀI TẬP ÁP DỤNG D. HƯỚNG DẪN GIẢI – ĐÁP SỐ

Nguồn: toanmath.com

Đọc Sách

Các bài toán chứng minh ba điểm thẳng hàng - ba đường thẳng đồng quy
Tài liệu gồm 80 trang, được biên soạn bởi thầy giáo Nguyễn Công Lợi, hướng dẫn phương pháp và tuyển chọn các bài toán chứng minh ba điểm thẳng hàng – ba đường thẳng đồng quy, đây là dạng toán thường gặp trong các đề tuyển sinh vào lớp 10 môn Toán. A. CÁC BÀI TOÁN VỀ BA ĐIỂM THẲNG HÀNG I. Một số phương pháp chứng minh ba điểm thẳng hàng + Phương pháp 1: Sử dụng góc bù nhau: Nếu có 0 ABx xBC 180 thì 3 điểm A, B, C thẳng hàng theo thứ tự đó. + Phương pháp 2: Sử dụng tiên đề về đường thẳng song song: Tiên đề Ơclít: Qua một điểm ở ngoài một đường thẳng chỉ kẻ được duy nhất một đường thẳng song song với đường thẳng đã cho. Do đó, nếu qua điểm A ta kẻ được AB và AC cùng song song với một đường thẳng d nào đó thì A, B, C thẳng hàng. Để chứng minh ba điểm A, B, C thẳng hàng ta chứng minh AB và AC cùng song song với một đường thẳng d. + Phương pháp 3: Sử dụng tiên đề về đường thẳng vuông góc: Để chứng minh ba điểm A, B, C thẳng hàng ta đi chứng minh AB và AC cùng vuông góc với một đường thẳng d. + Phương pháp 4: Sử dụng 2 tia trùng nhau hoặc đối nhau: Nếu hai tia MA, MB trùng nhau hoặc đối nhau thì 3 điểm M, A, B thẳng hàng. + Phương pháp 5: Thêm điểm: Để chứng minh 3 điểm A, B, C thẳng hàng có thể xác định thêm điểm D khác A, B, C sau đó chứng minh hai trong ba bộ ba điểm A, B, D; A, C, D; B, C, D thẳng hàng. + Phương pháp 6: Phương pháp sử dụng hình duy nhất: Để chứng minh ba điểm A, B, C thẳng hàng với C thuộc hình H nào đó. Ta gọi C’ là giao điểm của AB với hình H và tìm cách chứng minh hai điểm C và C’ trùng nhau. + Phương pháp 7: Sử dụng định lý Menelaus: Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt nằm trên các đường thẳng BC, CA, AB sao cho trong chúng hoặc không có điểm nào, hoặc có đúng 2 điểm thuộc các cạnh của tam giác ABC. Khi đó A’, B’, C’ thẳng hàng khi và chỉ khi. II. Một số ví dụ minh họa B. CÁC BÀI TOÁN VỀ BA ĐƯỜNG ĐỒNG QUY I. Một số phương pháp chứng minh ba đường đồng quy + Phương pháp 1: Chuyển bài toán chứng minh ba đường thẳng đồng quy về bài toán chứng minh ba điểm thẳng hàng. + Phương pháp 2: Chứng minh ba đường thẳng là đường trung tuyến, ba đường phân giác, ba đường cao, ba đường trung trực trong tam giác. + Phương pháp 3: Gọi giao điểm của hai đường thẳng là M và chứng minh đường thẳng còn lại cũng đi qua điểm M. + Phương pháp 4: Sử dụng định lí Ceva: Cho tam giác ABC. Các điểm A’, B’, C’ lần lượt thuộc các đường thẳng BC, CA, AB. Khi đó ba đường thẳng AA’, BB’, CC’ đồng quy khi và chỉ khi A B B C C A A C B A C B. II. Một số ví dụ minh họa
Tài liệu luyện thi vào lớp 10 môn Toán phần Đại số - Vũ Xuân Hưng
Tài liệu gồm 141 trang, được biên soạn bởi thầy giáo Vũ Xuân Hưng, tổng hợp kiến thức cần nhớ, các dạng bài tập và hướng dẫn giải, tuyển chọn các bài tập từ cơ bản đến nâng cao các chủ đề Đại số bậc THCS, giúp học sinh ôn tập chuẩn bị cho kỳ thi tuyển sinh vào lớp 10 môn Toán. CHUYÊN ĐỀ 1 – BIỂU THỨC CHỨA CĂN BẬC HAI. I – KIẾN THỨC CẦN NHỚ. 1. Định nghĩa căn bậc hai. 2. Các công thức vận dụng. 3. Định nghĩa căn bậc ba. 4. Tính chất của căn bậc ba. II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Tìm điều kiện để biểu thức có nghĩa. Dạng 2: Căn bậc hai số học. Dạng 3: Tính giá trị của biểu thức. Dạng 4: Phân tích đa thức thành nhân tử. Dạng 5: Tìm x. Dạng 6: So sánh. Dạng 7: Rút gọn biểu thức và các bài tập liên quan đến rút gọn. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 2 – HÀM SỐ BẬC NHẤT. I – KIẾN THỨC CẦN NHỚ. 1. Hàm số bậc nhất. 1.1 – Khái niệm hàm số bậc nhất. 1.2 – Tính chất. 1.3 – Đồ thị của hàm số y = ax + b (a khác 0). 1.4 – Cách vẽ đồ thị hàm số y = ax + b (a khác 0). 1.5 – Vị trí tương đối của hai đường thẳng. 1.6 – Hệ số góc của đường thẳng y = ax + b (a khác 0). II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Xác định hàm số đã cho là hàm đồng biến – nghịch biến. Dạng 2: Vẽ đồ thị của hàm số bậc nhất và các bài toán liên quan. Dạng 3: Tìm m để hai đường thẳng cắt nhau, song song, trùng nhau. Dạng 4: Xác định hàm số bậc nhất. Dạng 5: Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng lớn nhất, nhỏ nhất. Dạng 6: Xác định tham số m để đồ thị hàm số y = f(x;m) thỏa mãn một điều kiện cho trước. Dạng 7: Chứng minh 3 điểm thẳng hàng. Dạng 8: Tìm m để 3 đường thẳng đồng quy (cùng đi qua một điểm). III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 3 – HỆ PHƯƠNG TRÌNH BẬC NHẤT HAI ẨN SỐ. I – KIẾN THỨC CẦN NHỚ. 1. Giải hệ phương trình bằng phương pháp thế. 2. Giải hệ phương trình bằng phương pháp cộng đại số. II – CÁC DẠNG BÀI TẬP CƠ BẢN. Dạng 1: Giải hệ phương trình bằng phương pháp thế. Dạng 2: Giải hệ phương trình bằng phương pháp cộng đại số. Dạng 3: Giải hệ phương trình bằng phương pháp đặt ẩn phụ. Dạng 4: Xác định giá trị tham số m để hệ phương trình vô nghiệm. Dạng 5: Xác định giá trị tham số m để hệ phương trình đã cho có nghiệm duy nhất, tìm nghiệm duy nhất đó. Dạng 6: Tìm nghiệm x, y có chứa tham số m sau đó tìm GTLN hoặc GTNN của biểu thức cho trước. Dạng 7: Hệ phương trình chứa dấu giá trị tuyệt đối. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 4 – HÀM SỐ Y = AX2 (A KHÁC 0). PHƯƠNG TRÌNH BẬC HAI MỘT ẨN. I. Hàm số y = ax2 (a khác 0). II. Phương trình bậc hai một ẩn. 1. Định nghĩa: Phương trình bậc hai một ẩn là phương trình có dạng. 2. Công thức nghiệm của phương trình bậc hai. 3. Công thức nghiệm thu gọn. 4. Hệ thức Vi-et và ứng dụng. III. Các dạng bài tập cơ bản. IV. Bài tập áp dụng. CHUYÊN ĐỀ 5 – GIẢI BÀI TOÁN BẰNG CÁCH LẬP PHƯƠNG TRÌNH – HỆ PHƯƠNG TRÌNH. I – KIẾN THỨC CẦN NHỚ. 1. Phương pháp chung. 2. Một số dạng toán thường gặp. II – BÀI TẬP MINH HỌA. Dạng 1: Bài toán hình học. Dạng 2: Bài toán tìm số. Dạng 3: Bài toán dân số, phần trăm. Dạng 4: Bài toán năng suất. Dạng 5: Bài toán chung – riêng. Dạng 6: Bài toán chuyển động. Dạng 7: Bài toán thực tế vận dụng. III – BÀI TẬP TỰ LUYỆN. CHUYÊN ĐỀ 6 – BẤT ĐẲNG THỨC – TÌM GIÁ TRỊ MIN – MAX CỦA BIỂU THỨC. I – KIẾN THỨC CẦN NHỚ. 1. Phương pháp chung. 2. Phương pháp riêng. 2.1. Sử dụng một số bất đẳng thức cổ điển thông dụng. 2.2. Bất đẳng thức Cauchy (Cosi). 2.3. Bất đẳng thức Bunhiacopski. 2.4. Bất đẳng thức Trê-B-Sép. II – BÀI TẬP MINH HỌA.
Các bài toán chứng minh cực trị hình học
Tài liệu gồm 50 trang, hướng dẫn phương pháp giải các bài toán chứng minh cực trị hình học, đây là dạng toán thường gặp trong các đề tuyển sinh vào lớp 10 môn Toán. A. Phương pháp giải bài toán cực trị hình học. 1. Dạng chung của bài toán cực trị hình học. 2. Hướng giải bài toán cực trị hình học. 3. Cách trình bày lời giải bài toán cực trị hình học. B. Các kiến thức thường dùng giải bài toán cực trị hình học. 1. Sử dụng quan hệ giữa đường vuông góc, đường xiên, hình chiếu. 2. Sử dụng quan hệ giữa đường thẳng và đường gấp khúc. 3. Sử dụng các bất đẳng thức trong đường tròn. 4. Sử dụng bất đẳng thức về lũy thừa bậc hai. 5. Sử dụng bất đẳng thức Cô-si. 6. Sử dụng tỉ số lượng giác. C. Một số bài toán ôn luyện có hướng dẫn. D. Bài tập tự luyện. E. Rèn luyện tổng hợp.
Bài toán chứng minh các đường thẳng đồng quy
Tài liệu gồm 16 trang, hướng dẫn phương pháp giải bài toán chứng minh các đường thẳng đồng quy, đây là dạng toán thường gặp trong các đề tuyển sinh vào lớp 10 môn Toán. 1. CÁC PHƯƠNG PHÁP THƯỜNG ĐƯỢC SỬ DỤNG Cách 1 . Lợi dụng định lí về các đường đồng quy trong tam giác. + Sử dụng định lí ba đường cao của tam giác đồng quy tại một điểm + Sử dụng định lí ba đường trung tuyến của tam giác đồng quy tại một điểm. Điểm đó gọi là trọng tâm của tam giác. + Sử dụng các định lí: 1.Ba đường phân giác của tam giác đồng quy tại một điểm. + Giao điểm của hai đường phân giác ngoài nằm trên đường phân giác trong của góc thứ ba. + Sử dụng định lí ba đường trung trực của tam giác đồng quy tại một điểm. Cách 2 . Sử dụng tính chất các đường chéo cắt nhau tai trung điểm mỗi đường của của hình bình hành, hình chữ nhật, hình thoi, hình vuông. Cách 3 . Lùi về quen thuộc, chứng minh ba điểm thẳng hàng hoặc giao điểm của hai đường nằm trên đường thẳng thứ ba. 2. BÀI TẬP ÁP DỤNG