Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kì 1 Toán 8 năm 2023 - 2024 trường THCS Chương Dương - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề kiểm tra cuối học kì 1 môn Toán 8 năm học 2023 – 2024 trường THCS Chương Dương, quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 26 tháng 12 năm 2023. Trích dẫn Đề học kì 1 Toán 8 năm 2023 – 2024 trường THCS Chương Dương – Hà Nội : + Một tổ sản xuất theo kế hoạch phải may 780 chiếc khẩu trang trong một khoảng thời gian quy định. Do tăng năng suất lao động nên thực tế mỗi giờ tổ sản xuất may được nhiều hơn kế hoạch 8 chiếc. Gọi x là số khẩu trang mà tổ sản xuất phải may trong mỗi giờ theo kế hoạch (x thuộc N*, x < 780). Viết phân thức biểu thị theo x: a) Thời gian tổ sản xuất phải hoàn thành công việc theo kế hoạch. b) Thời gian tổ sản xuất đã hoàn thành công việc theo thực tế. c) Thời gian tổ sản xuất hoàn thành công việc trước kế hoạch. + Bạn Mai muốn may một cái lều cắm trại bằng vải bạt có dạng hình chóp tứ giác đều với độ dài cạnh đáy là 2m, độ dài trung đoạn là 3m. a) Tính diện tích xung quanh của lều. b) Biết rằng khi may lều, phải thêm vải để may các mép và cửa lều nên phát sinh thêm 5% so với số vải cần để may diện tích toàn phần của lều (tức tổng diện tích các mặt của hình chóp tứ giác đều). Hỏi bạn Mai cần mua bao nhiêu mét vuông vải bạt? + Cho tam giác ABC vuông tại A (AB < AC). D là trung điểm cạnh BC. Vẽ DE vuông góc với AB tại E và DF vuông góc với AC tại F. a) Chứng minh tứ giác AEDF là hình chữ nhật. b) Chứng minh EF = 5cm nếu AB = 6cm và AC = 8cm (số liệu chỉ dùng cho câu b). c) Vẽ đường cao AH của tam giác ABC (H BC). Chứng minh EH vuông góc HF. d) Qua C vẽ đường thẳng song song với AD cắt tia BF tại I. Chứng minh BC = 3CI.

Nguồn: toanmath.com

Đọc Sách

Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Giảng Võ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Giảng Võ, quận Ba Đình, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Giảng Võ – Hà Nội : + Cho tam giác ABC cân tại A có đường cao AD. Lấy điểm H thuộc đoạn thẳng AD, gọi K là điểm đối xứng với điểm H qua điểm D 1) Tứ giác BHCK là hình gì? Vì sao? 2) Đường thẳng vuông góc với đường thẳng BC tại C cắt tia BK tại điểm M. Chứng minh rằng: KM HC. 3) Qua điểm M kẻ đường thẳng song song với đường thẳng BC cắt tia CK tại N. Chứng minh rằng: Tứ giác BCMN là hình chữ nhật. Tính diện tích hình chữ nhật BCMN biết rằng BC 8cm BH 5cm. 4) Đường thẳng ND cắt đoạn thẳng HC tại điểm P. Chứng minh tỉ số HP PC không đổi khi điểm H di chuyển trên đường cao AD. + Cho x y z là các số khác 0 thỏa mãn x y z 0 và xy yz zx xyz 3. Tính giá trị biểu thức 3 3 3 yz x xz y xy z A x yz xy z xyz. + Cho hai biểu thức 2 1 1 x A x và 2 3 6 4 1 1 1 x x B x x x với x x 1 1 1) Tính giá trị của A khi x 6. 2) Rút gọn B. 3) Đặt P A B. Tìm tất cả các giá trị nguyên âm của x để P nhận giá trị là số nguyên.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Lê Ngọc Hân – Hà Nội : + Cho tam giác ABC đường phân giác BD. Từ D kẻ đường thẳng song song với AB cắt BC tại E. Từ D kẻ đường thẳng song song với BC cắt AB tại F. a) Chứng minh tứ giác BEDF là hình thoi. b) Vẽ M đối xứng với F qua B. Tứ giác BDEM là hình gì? Vì sao? c) Lấy N đối xứng với E qua B. Chứng minh tứ giác MNFE là hình chữ nhật. d) Lấy P là một điểm bất kì trên đường thẳng BD, Q là điểm đối xứng với P qua A. Khi P chạy trên đường thẳng BD cố định thì Q chạy trên đường thẳng cố định nào? + Cho biểu thức 2 2 3 3 2 3 6 2 2 2 4 x x x x P x x x x a) Rút gọn biểu thức P. b) Tính các giá trị của biểu thức P khi x 3 c) Tìm các giá trị nguyên của x để biểu thức P đạt giá trị nguyên. + Tìm giá trị lớn nhất của biểu thức 2 2020 2021 x C.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Nguyễn Công Trứ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Công Trứ, quận Ba Đình, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Công Trứ – Hà Nội : + Giữa hai điểm A và B là một hồ nước sâu. Biết A B lần lượt là trung điểm của MC MD (xem hình vẽ). Bạn An đi từ C đến D với vận tốc 180 m/phút hết 2 phút 30 giây. Hỏi hai điểm A và B cách nhau bao nhiêu mét? + Cho ABC cân tại A, trung tuyến AH. Lấy điểm D đối xứng với A qua H. a) Chứng minh rằng: Tứ giác ABDC là hình thoi. b) Qua A kẻ đường thẳng vuông góc với AH cắt tia DC tại E. Tứ giác ABCE là hình gì ? Vì sao ? c) Tìm điều kiện của ABC để tứ giác ABCE là hình thoi ? d) Gọi I là trung điểm của AE. Chứng minh rằng : AC BE HI đồng quy. + Cho biểu thức 2 2 x B x x. a) Tính giá trị biểu thức B khi x 3. b) Rút gọn biểu thức 2 2 1 1 A 2 4 2 2 x x x x x. c) Cho biểu thức P A B. Tìm x nguyên để biểu thức P đạt giá trị nguyên.
Đề thi học kì 1 Toán 8 năm 2020 - 2021 trường THCS Nguyễn Trãi - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề thi học kì 1 Toán 8 năm học 2020 – 2021 trường THCS Nguyễn Trãi, quận Hà Đông, thành phố Hà Nội, nhằm giúp các em ôn tập, thử sức để chuẩn bị cho kì thi HK1 Toán 8 sắp tới. Trích dẫn đề thi học kì 1 Toán 8 năm 2020 – 2021 trường THCS Nguyễn Trãi – Hà Nội : + Cho ∆ ABC vuông tại A (AB > AC). Gọi O là trung điểm BC. Lấy D đối xứng với A qua O. a) Chứng minh. Tứ giác ABDC là hình chữ nhật b) Cho AC = 6cm; AD = 10cm. Tính diện tích tứ giác ABDC c) Lấy E đối xứng với D qua BC. Từ E kẻ đường thẳng vuông góc với AB đường này cắt BC tại F. Chứng minh EFDB là hình thoi d) Chứng minh CE vuông góc với EB. + Cho biểu thức 2 2 5 1 3 2 3 6 2 x A x x x x x và 7 2 B x với 2 x a) Tính giá trị của biểu thức B khi 2 x 4 0 b) Rút gọn A c) Tìm x nguyên để biểu thức P A B có giá trị nguyên. + Cho a b c là các số dương thỏa mãn 3 3 3 a b c abc 3. Hãy tính giá trị của biểu thức 2020 2020 2020 2020 2020 2020.