Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 1 Toán 9 năm 2023 - 2024 trường Marie Curie - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra cuối học kỳ 1 môn Toán 9 năm học 2023 – 2024 trường THCS và THPT Marie Curie, quận Nam Từ Liêm, thành phố Hà Nội. Trích dẫn Đề học kỳ 1 Toán 9 năm 2023 – 2024 trường Marie Curie – Hà Nội : + Cho hàm số y = (m − 1)x + 2m − 3 (d) (m khác 1). 1) Tìm m để (d) đi qua A(1;5). Vẽ đồ thị hàm số với m tìm được. 2) Tìm m để (d) // (d1): y = x + 3. 3) Chứng minh (d) luôn đi qua điểm cố định với mọi m. + Một cột đèn cao 9m. Ở một thời điểm trong ngày, mặt trời chiếu tạo thành bóng của cột đèn trên mặt đất là 5m. Hỏi lúc đó góc tạo bởi tia nắng mặt trời và mặt đất là bao nhiêu? (Làm tròn số đo góc tới độ). + Cho đường tròn (O;R). Dây MN khác đường kính. Qua O kẻ đường thẳng vuông góc với MN, cắt tiếp tuyến tại M của đường tròn ở điểm A. a) AO giao với MN tại H. Chứng minh OH.OA = R2. b) Chứng minh AN là tiếp tuyến của đường tròn (O;R). c) Kẻ đường kính MB. Gọi I là trung điểm của NB. Chứng minh bốn điểm O; H; N; I cùng thuộc một đường tròn. d) Kéo dài OI cắt tia AN tại K. Qua O kẻ đường thẳng vuông góc với AB cắt tia MN tại Q. Chứng minh K là trung điểm của BQ.

Nguồn: toanmath.com

Đọc Sách

Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Vĩnh Tường - Vĩnh Phúc
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Vĩnh Tường – Vĩnh Phúc gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận, thời gian làm bài 90 phút, có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 1 Toán 9 : Cho đường tròn (O;R) đường kính AB. Qua A và B vẽ lần lượt hai tiếp tuyến (d) và (d’). Một đường thẳng qua O cắt đường thẳng (d) ở M và (d’) ở P. Từ O kẻ tia Ox vuông góc với MP và cắt (d’) ở N. a) Chứng minh OM = OP và tam giác NMP cân b) Chứng minh MN là tiếp tuyến của (O) c) Chứng minh AM.BN = R^2 d) Tìm vị trí của M để diện tích tứ giác AMNB là nhỏ nhất Giải : a) Xét ΔAMO và ΔBPO có: góc MAO = PBO = 90 độ (Tính chất tiếp tuyến) OA = OB (bán kính) Góc AOM = BOP (2 góc đối đỉnh) Do đó: ΔAMO = ΔBPO (g.c.g), suy ra OM = OP (2 cạnh tương ứng) Xét ΔMNP có: OM = OP (chứng minh trên) NO ⊥ MP (theo giả thiết) Suy ra ON là đường trung tuyến, đồng thời là đường cao của tam giác MNP Vậy tam giác MNP cân tại N Gọi I là hình chiếu của điểm O trên cạnh MN vuông góc OI MN tại I [ads] b) Vì tam giác MNP cân tại N nên góc OMI = OPB (2 góc đáy) Xét tam giác OMI và tam giác OPB có: Góc OIM = OBP = 90 OM = OP (chứng minh trên) Góc OMI OPB (chứng minh trên) Do đó: ΔOMI = ΔOPB (cạnh huyền – góc nhọn) Suy ra OI = OB = R Vì OI ⊥ MN tại I và OI = OB = R nên MN là tiếp tuyến của (O;R) tại I c) Xét ΔAMO và ΔBON có: góc AMO = BON (cùng phụ với góc AOM) Góc MAO = OBN = 90 (Tính chất tiếp tuyến) Do đó: ΔAMO đồng dạng với ΔBON (g.g) Suy ra AM/BO = AO/BN Suy ra AM.BN = AO.BO = R^2 ( Vì OA=OB=R) d) Ta có: MA ⊥ AB (Tính chất tiếp tuyến) NB ⊥ AB (Tính chất tiếp tuyến) Do đó: MA // NB nên AMNB là hình thang vuông Vì AMNB là hình thang vuông nên ta có: S AMNB = (AM + NB).AB/2 Mặt khác: AM = MI (Tính chất 2 tiếp tuyến cắt nhau) BN = NI (Tính chất 2 tiếp tuyến cắt nhau) Do đó: S AMNB = (MI + NI).AB/2 = MN.AB/2 Mà AB = 2R cố định nên AMNB S nhỏ nhất khi MN nhỏ nhất ⇔ MN // AB hay AM = R. Khi đó S AMNB = 2R^2 Vậy để diện tích tứ giác AMNB nhỏ nhất thì MN//AB và AM = R
Đề kiểm tra HK1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Hai Bà Trưng - Hà Nội
Đề kiểm tra HK1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Hai Bà Trưng – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 12 tháng 12 năm 2017.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 phòng GD và ĐT Đống Đa - Hà Nội
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 phòng GD và ĐT Đống Đa – Hà Nội gồm 5 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi diễn ra vào ngày 15 tháng 12 năm 2017.
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 - 2018 sở GD và ĐT Bạc Liêu
Đề kiểm tra học kỳ 1 Toán 9 năm học 2017 – 2018 sở GD và ĐT Bạc Liêu gồm 1 trang với 5 bài toán tự luận, đề thi nhằm đánh giá chất lượng học tập môn Toán của học sinh lớp 9. Đề thi có lời giải chi tiết và thang điểm.