Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG lớp 12 môn Toán THPT chuyên năm học 2019 2020 sở GD ĐT Vĩnh Phúc

Nội dung Đề thi HSG lớp 12 môn Toán THPT chuyên năm học 2019 2020 sở GD ĐT Vĩnh Phúc Bản PDF Ngày …/10/2019, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi chọn học sinh giỏi Toán lớp 12 chương trình THPT chuyên năm học 2019 – 2020. Đề thi HSG Toán lớp 12 THPT chuyên năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc được biên soạn theo dạng đề tự luận với 05 bài toán, thời gian làm bài 180 phút, đề thi gồm có 01 trang, có lời giải chi tiết và hướng dẫn chấm. Trích dẫn đề thi HSG Toán lớp 12 THPT chuyên năm học 2019 – 2020 sở GD&ĐT Vĩnh Phúc : + Cho tam giác nhọn ABC có đường cao AH. Đường tròn nội tiếp (I) của tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Đường tròn (A) có tâm A bán kính AE cắt đoạn thẳng AH tại điểm K. Đường thẳng IK cắt đường thẳng BC tại P. Các đường thẳng DK và PK cắt đường tròn (A) lần lượt tại Q và T khác K. a) Chứng minh rằng tứ giác TDPQ nội tiếp và ba điểm Q, A, P thẳng hàng. b) Đường thẳng DK cắt đường tròn (I) tại điểm thứ hai là X. Chứng minh rằng ba đường thẳng AX, EF, TI đồng quy. c) Chứng minh rằng đường tròn đường kính AP tiếp xúc với đường tròn (I). [ads] + Cho P(x) là một đa thức khác hằng số với hệ số thực sao cho tất cả các nghiệm của nó đều là số thực. Giả sử tồn tại một đa thức Q(x) với hệ số thực sao cho (P(x))^2 = P(Q(x)) với mọi x thuộc R. Chứng minh rằng tất cả các nghiệm của đa thức P(x) đều bằng nhau. + Một tập hợp gồm 3 số nguyên dương được gọi là tập Pytago nếu 3 số này là độ dài ba cạnh của một tam giác vuông. Chứng minh rằng với hai tập Pytago P, Q bất kỳ, ta luôn tìm được m tập Pytago P1, P2 … Pm (m ≥ 2) sao cho P1 = P, Pm = Q và Pi giao Pi+1 khác rỗng với mọi 1 ≤ i ≤ m – 1.

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Phú Thọ
Đề thi chọn HSG Toán 12 THPT cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Phú Thọ gồm 6 trang, thời gian làm bài 180 phút, đề thi gồm 2 phần: + Phần tư luận (8 điểm): Gồm 4 bài toán tự luận + Phần trắc nghiệm (12 điểm): Gồm 40 câu trắc nghiệm
Lời giải và bình luận đề thi VMO 2018
Tài liệu gồm 22 trang hướng dẫn giải và bình luận đề thi VMO 2018 (Đề thi chọn học sinh giỏi quốc gia THPT năm 2018 của Bộ giáo dục và Đào tạo). Kỳ thi VMO 2018 được diễn ra trong 2 ngày 11 và 12/01/2018 với tổng cộng 7 bài toán. Tài liệu được biên soạn bởi các thầy, cô giáo và thành viên trong nhóm Epsilon: Trần Nam Dũng, Võ Quốc Bá Cẩn, Lê Phúc Lữ, Trần Quang Hùng, Nguyễn Lê Phước, Nguyễn Văn Huyện.
Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh THPT năm học 2017 - 2018 sở GD và ĐT Hòa Bình
Đề thi chọn học sinh giỏi Toán 12 cấp tỉnh THPT năm học 2017 – 2018 sở GD và ĐT Hòa Bình gồm 6 bài toán tự luận, thời gian làm bài 180 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn học sinh giỏi Toán 12 : + Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a√2, BC = a và SA = SB = SC = SD = 2a. Gọi K là hình chiếu vuông góc của điểm B trên AC và H là hình chiếu vuông góc của K trên SA. a) Tính thể tích khối chóp S.ABCD theo a. b) Tính diện tích xung quanh của hình nón được tạo thành khi quay tam giác ADC quanh AD theo a. c) Tính cosin góc giữa đường thẳng SB và mặt phẳng (BKH). [ads] + Cho đa giác lồi có 14 đỉnh. Gọi X là tập hợp các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên trong X một tam giác. Tính xác suất để tam giác được chọn không có cạnh nào là cạnh của đa giác đã cho. + Trong mặt phẳng với hệ trục tọa độ Oxy, cho điểm K(-2;-5) và đường tròn (C) có phương trình (x – 1)^2 + (y – 1)^2 = 10. Đường tròn (C2) tâm K cắt đường tròn (C) tại hai điểm A, B sao cho dây cung AB = 2√5. Viết phương trình đường thẳng AB.
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2017 - 2018 sở GD và ĐT Ninh Bình
Đề thi học sinh giỏi Toán 12 cấp tỉnh năm học 2017 – 2018 sở GD và ĐT Ninh Bình gồm 8 trang với 56 câu trắc nghiệm khách quan, 05 câu tự luận, kỳ thi diễn ra vào ngày 06 tháng 12 năm 2017, đề thi có đáp án . Trích dẫn đề thi HSG : + Cho hàm số y = log1/3 x. Mệnh đề nào dưới đây là mệnh đề sai? A. Đồ thị hàm số đã cho có một đường tiệm cận đứng B. Hàm số đã cho có đạo hàm y’ = -1/xlog3 ∀x ≠ 0 C. Hàm số đã cho có tập xác định D = R\{0} D. Hàm số đã cho nghịch biến trên mỗi khoảng mà nó xác định [ads] + Bồn chứa nước SƠN HÀ có hình trụ kín cả 2 đáy, trong đó bán kính đường tròn đáy là r và chiều cao của bồn là h. Nhà máy sản xuất bồn tùy theo yêu cầu của khách hàng và cứ tính theo đơn giá 1 triệu đồng 1 m2 vật liệu làm bồn. Một khách hàng đặt 10 triệu đồng để làm một bồn nước SƠN HÀ. Anh hay chị hãy tính giúp vị khách đó kích thước của bồn để bồn đựng được nhiều nước nhất. + Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi K là trung điểm của SC. Mặt phẳng qua AK cắt các cạnh SB, SD lần lượt tại M và N. Gọi V1, V thứ tự là thể tích của khối chóp S.AMKN và khối chóp S.ABCD. Tìm giá trị nhỏ nhất và giá trị lớn nhất của tỷ số V1/V.