Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi lớp 10 môn Toán năm 2012 2013 trường THPT Thuận An TT Huế

Nội dung Đề thi học sinh giỏi lớp 10 môn Toán năm 2012 2013 trường THPT Thuận An TT Huế Bản PDF - Nội dung bài viết Đề thi học sinh giỏi Toán lớp 10 năm 2012 – 2013 trường THPT Thuận An TT Huế Đề thi học sinh giỏi Toán lớp 10 năm 2012 – 2013 trường THPT Thuận An TT Huế Sytu xin gửi đến quý thầy cô và các em học sinh lớp 10 đề thi học sinh giỏi môn Toán năm học 2012 – 2013 của trường THPT Thuận An, tỉnh Thừa Thiên Huế. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm cho các bài toán. Trích dẫn một số câu hỏi từ đề thi: Cho phương trình \(2mx^2 + mx + m - 2 = 0\), trong đó \(m\) là tham số. Tìm giá trị của \(m\) để phương trình đã cho có một nghiệm. Tìm giá trị của \(m\) để phương trình đã cho có hai nghiệm, với một nghiệm gấp đôi nghiệm còn lại. Cho tam giác \(ABC\). Trên các cạnh \(AB\), \(BC\), \(CA\) lần lượt lấy điểm \(M\), \(N\), \(P\) sao cho \(\dfrac{AM}{AB} = \dfrac{BC}{2}\), \(\dfrac{BN}{BC} = \dfrac{AC}{3}\) và \(\dfrac{CP}{CA} = 2\). Chứng minh rằng hai tam giác \(ABC\) và \(MNP\) có cùng trọng tâm. Gọi \(a\), \(b\), \(c\) là độ dài ba cạnh của tam giác \(abc\), \(h_a\), \(h_b\), \(h_c\) lần lượt là độ dài ba đường cao tương ứng với ba cạnh đó, \(r\) là bán kính đường tròn nội tiếp tam giác đó. Hãy tính công thức liên quan giữa các đại lượng này. Đề thi này rất thú vị và mang tính thách thức cao đối với các em học sinh lớp 10. Hy vọng rằng đề thi và lời giải chi tiết sẽ giúp các em rèn luyện kỹ năng giải toán một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề chọn học sinh giỏi cấp trường môn Toán lớp 10 Trường THPT Võ Thành Trinh năm 2021-2022
Đề thi chọn học sinh giỏi môn Toán cấp Tỉnh THPT Sở GDDT Lào Cai năm 2021-2022
Đề thi chọn học sinh giỏi THPT môn Toán cấp Quốc gia Bộ GDDT năm 2021-2022
Đề thi HSG môn Toán lớp 10 năm 2020 - 2021 THPT Đồng Đậu có đáp án