Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài toán khoảng cách giữa hai đường thẳng chéo nhau

Tài liệu gồm 37 trang được biên soạn bởi tập thể quý thầy, cô giáo Nhóm Word Và Biên Soạn Tài Liệu Môn Toán THPT, hướng dẫn giải bài toán khoảng cách giữa hai đường thẳng chéo nhau, được phát triển dựa trên câu 37 đề thi minh họa THPT Quốc gia môn Toán năm học 2019 – 2020 do Bộ Giáo dục và Đào tạo công bố. Giới thiệu sơ lược về tài liệu bài toán khoảng cách giữa hai đường thẳng chéo nhau: A. KIẾN THỨC CẦN NHỚ 1. Khoảng cách giữa điểm và mặt phẳng Khoảng cách giữa một điểm và một mặt phẳng là khoảng cách từ điểm đó tới hình chiếu vuông góc của nó lên mặt phẳng đó. + Khoảng cách từ điểm M bất kì đến mặt phẳng (α) có chứa đường cao của hình chóp, hình lăng trụ. + Khoảng cách từ hình chiếu vuông góc A của đỉnh S đến mặt phẳng bên (α). + Khoảng cách từ điểm bất kì đến mặt phẳng bên. 2. Khoảng cách giữa một đường thẳng và một mặt phẳng song song Khoảng cách giữa một đường thẳng và một mặt phẳng song song là khoảng cách từ một điểm bất kì trên đường thẳng này tới mặt phẳng kia. [ads] 3. Khoảng cách giữa hai mặt phẳng song song Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm bất kì trên mặt phẳng này tới mặt phẳng kia. 4. Khoảng cách hai đường thẳng chéo nhau a. Khoảng cách hai đường thẳng chéo nhau là độ dài đoạn vuông góc chung  của hai đường thẳng đó. b. Cách tính khoảng cách giữa hai đường thẳng chéo nhau + Cách 1: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa một trong hai đường thẳng đó và mặt phẳng song song với nó, chứa đường thẳng còn lại. + Cách 2: Khoảng cách giữa hai đường thẳng chéo nhau bằng khoảng cách giữa hai mặt phẳng song song lần lượt chứa hai đường thẳng đó. + Cách 3: Dựng và tính độ dài đoạn vuông góc chung của hai đường thẳng chéo nhau a và b. B. BÀI TẬP MẪU C. BÀI TẬP TƯƠNG TỰ VÀ PHÁT TRIỂN

Nguồn: toanmath.com

Đọc Sách

Kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian - Hà Duy Nghĩa
Tài liệu sáng kiến kinh nghiệm được biên soạn bởi thầy Hà Duy Nghĩa gồm 20 trang, trình bày một số kỹ thuật tư duy và giải toán trắc nghiệm hình học không gian. Tài liệu trình bày các vấn đề : + Bài toán liên quan đến thể tích khối đa diện: Trình bày một số kỹ thuật tính thể tích thông qua việc phân chia các thể tích cũng như tính tỉ số thể tích trực tiếp, gián tiếp và những ưu khuyết điểm của nó. + Bài toán liên quan đến tâm, bán kính mặt cầu ngoại tiếp hình đa diện: Trình bày về vấn đề hay gặp là tìm bán kính mặt cầu ngoại tiếp khối chóp và lăng trụ còn về tâm mặt cầu thì chỉ đề cập. + Bài toán liên quan đến hình tròn xoay: Trình bày một số bài toán liên quan đến thể tích các vật thể tròn xoay trong thực tế, các dạng bài tập tương tự như các bài trong đề thi minh họa và đề thử nghiệm.
Tài liệu chuyên Toán THPT chuyên đề Hình học không gian
Cuốn sách Tài liệu chuyên Toán THPT chuyên đề Hình học không gian gồm 160 trang được biên soạn bởi các tác giả Trần Đức Huyên, Nguyễn Duy Hiếu (trường THPT chuyên Lê Hồng Phong – TP. HCM nhằm giúp các em học sinh khối 11 – 12 cải thiện và nâng cao kỹ năng giải toán Hình học không gian và hướng đến kỳ thi THPTQG. Nội dung sách : Phần 1. Lý thuyết và phương pháp giải toán Chương 1. Hình lăng trụ Chương 2. Hình hộp Chương 3. Hình chóp Chương 4. Hình cầu Chương 5. Hình trụ Chương 6. Hình nón Chương 7. Các bài toán về khoảng cách Chương 8. Các bài toán về góc Phần 2. Ứng dụng để giải các đề tuyển sinh đại học [ads] Xem thêm : + Tài liệu chuyên Toán – Hình học 11 + Giải toán 12 nguyên hàm – tích phân – Trần Đức Huyên (Tài liệu cùng tác giả)
Ôn luyện bồi dưỡng học sinh giỏi hình học không gian - Phan Huy Khải
Nhằm giúp các em học sinh THPT nói chung, các bạn học sinh giỏi Toán nói riêng có thêm tài liệu rèn luyện bồi dưỡng chuyên đề hình học không gian để phục vụ cho kỳ thi THPT Quốc gia và các kỳ thi học sinh giỏi Toán, giới thiệu cuốn sách Ôn luyện bồi dưỡng học sinh giỏi hình học không gian (287 trang). Sách được biên soạn bởi các tác giả: Phan Huy Khải (Chủ biên), Chử Xuân Dũng, Hoàng Văn Phủ, Cù Phượng Anh. Nội dung sách : Chương 1 . Đường thẳng và mặt phẳng trong không gian. Quan hệ song song + Các bài toán đại cương về đường thẳng và mặt phẳng + Các bài toán về thiết diện + Các bài toán về tính song song của đường thẳng và mặt phẳng Chương 2 . Quan hệ vuông góc Các bài toán về khoảng cách + Khoảng cách từ một điểm tới một đường thẳng, hoặc từ một điểm tới mặt phẳng + Khoảng cách giữa hai đường thẳng chéo nhau Các bài toán về góc trong không gian + Bài toán về góc giữa hai đường thẳng chéo nhau + Bài toán về góc giữa đường thẳng và mặt phẳng và góc giữa hai mặt phẳng Sử dụng phương pháp tọa độ để giải các bài toán về khoảng cách và góc trong không gian Thể tích của khối đa diện + Tính thể tích bằng cách sử dụng trực tiếp các công thức về thể tích + Tính thể tích bằng cách sử dụng thể tích của các khối đa diện khác + Bài toán so sánh thể tích + Các bài toán liên quan đến thể tích + Sử dụng phương pháp thể tích để tìm khoảng cách Các bài toán về quan hệ vuông góc + Các bài toán chọn lọc về quan hệ vuông góc + Các bài toán chứng minh tính vuông góc trong các đề thi tuyển sinh môn Toán + Các bài toán về thiết diện liên quan đến tính vuông góc [ads] Chương 3 . Khối tròn xoay Hình cầu + Các bài toán chọn lọc về hình cầu + Nhìn lại các bài toán về hình cầu trong các đề thi tuyển sinh vào đại học cao đẳng Hình trụ, hình nón + Các dạng toán cơ bản + Các bài toán phối hợp giữa hình trụ, hình nón với hình cầu và các khối đa diện Chương 4 . Một số chuyên đề đặc biệt + Hình tứ diện: Tứ diện vuông, Tứ diện trực tâm, Tứ diện gần đều + Các bài toán quỹ tích trong hình học không gian
Tài liệu tự học chuyên đề đa diện và thể tích khối đa diện - Lê Minh Cường
Tài liệu gồm 56 trang hướng dẫn tự học chuyên đề đa diện và thể tích khối đa diện (Chương 1 Hình học 12) thông qua hệ thông lý thuyết và bài tập có đáp án. Tài liệu được biên soạn bởi thầy Lê Minh Cường. Nội dung tài liệu : 1. Khái niệm khối đa diện 1. Tính chất, số cạnh, đỉnh, mặt của khối đa diện 2. Lý thuyết đa diện lồi và đa diện đều 3. Tính chất về cạnh – đỉnh – mặt của đa diện lồi và đa diện đều 4. Tính chất đối xứng của khối đa diện 2. Công thức thể tích đơn giản  1. Khối chóp 2. Khối lăng trụ 3. Thể tích có tính toán thêm một yếu tố  1. Khối chóp 2. Khối lăng trụ [ads] 4. Thể tích của khối có chứa góc 1. Khối chóp 2. Khối lăng trụ 5. Tính thể tích và khoảng cách gián tiếp 1. Sử dụng tỷ lệ thể tích 2. Tính khoảng cách dựa vào công thức thể tích 6. Các bài toán tổng hợp 1. Khối chóp 2. Khối lăng trụ tam giác 3. Khối hộp 4. Tổng hợp 7. Các bài toán vận dụng thực tế liên quan đến khối đa diện