Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng hàm số lũy thừa, hàm số mũ và hàm số logarit để giải các bài toán thực tế liên quan

Tài liệu 63 trang giới thiệu các ứng dụng hàm số lũy thừa, hàm số mũ và hàm số logarit đế giải quyết các bài toán thực tế liên quan. Các bài toán về hàm số lũy thừa hàm số mũ và hàm số logarit là các bài toán rất hay và có nhiều ứng dụng trong thực tế. 1. Các ứng dụng trong kinh tế: Bài toán lãi suất trong gửi tiền vào ngân hàng, bài toán vay, mua trả góp … 2. Các ứng dụng trong lĩnh vực đời sống và xã hội: Bài toán tăng trưởng về dân số …. 3. Các ứng dụng trong lĩnh vực khoa học kỹ thuật: Bài toán liên quan đến sự phóng xạ, tính toán các cơn dư chấn do động đất, cường độ và mức cường độ âm thanh … [ads] Trước khi đọc các phần tiếp theo của tài liệu, các em thử một lần nhớ lại có khi nào ta từng đi theo bố (mẹ) vào ngân hàng: để gửi tiền tiết kiệm, hoặc vay tiền ngân hàng, hoặc làm một thẻ ATM mới … ở đó các em sẽ thay được những bảng thông báo về lãi suất tiền gửi, lãi suất cho vay, các em nghe được các nhân viên ngân hàng tư vấn về hình thức gửi tiền (vay tiền) và cách tính lãi suất. Liệu có em nào thắc mắc tư hỏi rằng lãi suất là gì? Có các hình thức tính lãi suất nào thường gặp? Câu trả lời sẽ có trong các phần tiếp theo của tài liệu. Trong tài liệu nhỏ này các em cũng tìm được những câu trả lời cho các câu hỏi như: Dân số các quốc gia được dự báo tăng hay giảm bằng cách nào? Độ to (nhỏ) của âm thanh được tính toán như thế nào? … Qua nội dung này, chúng ta sẽ biết vận dụng các kiến thức đã học về hàm số lũy thừa, hàm số mũ và hàm số logarit vào đế giải quyết một số bài toán thực tế liên quan các chủ đề nêu ở trên. Các chủ đề trong bài toán, được thể hiện qua các phần sau: + Phần A: Tóm tắt lí thuyết và các kiến thức liên quan + Phần B: Các bài toán ứng dụng thực tế + Phần C: Các bài toán trắc nghiệm khách quan + Phần D: Đáp án và hướng dẫn giải câu hỏi trắc nghiệm Bạn đọc có thể xem thêm ứng dụng của các kiến thức tích phân, hình học vào giải quyết các bài toán thực tế dưới đây: + Ứng dụng tích phân để giải bài toán thực tiễn – Trần Văn Tài + Bài toán thực tế liên quan đến hình học – Nguyễn Bá Hoàng

Nguồn: toanmath.com

Đọc Sách

Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit - Cao Tuấn
Chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit do thầy Cao Tuấn biên soạn gồm 21 trang. Nội dung tài liệu gồm các phần: A. KIẾN THỨC CẦN NHỚ I. LŨY THỪA 1. Lũy thừa với số mũ nguyên 2. Căn bậc n và lũy thừa với số mũ hữu tỉ 3. Lũy thừa với số mũ thực [ads] II. HÀM SỐ LŨY THỪA 1. Khái niệm hàm số lũy thừa 2. Đạo hàm của hàm số lũy thừa 3. Sự biến thiên của hàm số lũy thừa B. MỘT SỐ VÍ DỤ VỀ SỬ DỤNG KỸ THUẬT GIẢI NHANH C. VÍ DỤ MINH HỌA D. CÂU HỎI TRẮC NGHIỆM RÈN LUYỆN
Chuyên đề hàm số lũy thừa, hàm số mũ, hàm số lôgarit - Nguyễn Ngọc Dũng
Bắt đầu từ năm 2017, môn toán trong kì thi THPT Quốc Gia sẽ diễn ra dưới hình thức trắc nghiệm. Nắm bắt được xu hướng đó, nhằm giúp các em học sinh có một tài liệu tự luận kết hợp với trắc nghiệm hay và bám sát chương trình, nhóm chúng tôi biên soạn ebook chuyên đề hàm số lũy thừa, hàm số mũ và hàm số lôgarit. Ebook là một trong các chuyên đề do nhóm tác giả biên soạn. Trong ebook này, nhóm tác giải đã tổng hợp các câu trắc nghiệm từ gần 200 đề thi thử trên cả nước, giúp các em chinh phục kỳ thi THPT Quốc Gia một cách hiệu quả nhất. Mục lục Chủ đề 1. Công thức mũ. Công thức lũy thừa 1. Tóm tắt lý thuyết 2. Các dạng toán 2.1. Rút gọn biểu thức chứa lũy thừa 2.2. Chứng minh đẳng thức chứa lũy thừa 2.3. So sánh các biểu thức chứa lũy thừa 3. Bài tập trắc nghiệm Chủ đề 2. Công thức lôgarit  1. Tóm tắt lý thuyết 2. Các dạng toán 2.1. Tính toán – rút gọn biểu thức có chứa lôgarit 2.2. Chứng minh đẳng thức chứa lôgarit 2.3. So sánh các lôgarit 2.4. Biểu diễn một lôgarit theo các lôgarit khác 3. Bài tập trắc nghiệm [ads] Chủ đề 3. Hàm số lũy thừa. Hàm số mũ. Hàm số lôgarit  1. Tóm tắt lý thuyết 2. Các dạng toán 2.1. Tìm tập xác định của hàm số 2.2. Đạo hàm – giá trị lớn nhất, nhỏ nhất 2.3. Đồ thị của hàm số mũ – hàm số lũy thừa – hàm số lôgarit 3. Bài tập trắc nghiệm Chủ đề 4. Phương trình mũ 1. Phương pháp đưa về cùng cơ số 2. Phương pháp lôgarit hóa 3. Phương pháp đặt ẩn phụ 4. Phương pháp đưa về phương trình tích 5. Phương pháp hàm số 6. Bài tập trắc nghiệm Chủ đề 5. Phương trình lôgarit  1. Phương pháp đưa về cùng cơ số 2. Phương pháp mũ hóa 3. Phương pháp đặt ẩn phụ 4. Phương pháp đưa về phương trình tích 5. Phương pháp hàm số 6. Bài tập trắc nghiệm Chủ đề 6. Bất phương trình mũ 1. Phương pháp đưa về cùng cơ số 2. Phương pháp đặt ẩn phụ 3. Phương pháp lôgarit hóa 4. Bài tập trắc nghiệm Chủ đề 7. Bất phương trình lôgarit  1. Phương pháp đưa về cùng cơ số 2. Phương pháp đặt ẩn phụ 3. Bài tập trắc nghiệm Chủ đề 8. Các bài toán thực tế 1. Phương pháp 2. Bài tập tự luận 3. Bài tập trắc nghiệm
Chuyên đề hàm số luỹ thừa, hàm số mũ và hàm số logarit - Trần Quốc Nghĩa
Tài liệu phân dạng, hướng dẫn phương pháp giải kèm bài tập mẫu và bài tập trắc nghiệm có đáp án chuyên đề hàm số luỹ thừa, hàm số mũ và hàm số logarit trong chương trình Giải tích 12. Nội dung tài liệu gồm các phần: Vấn đề 1. Lũy thừa với số mũ hữu tỉ – số mũ thực + Dạng 1. Tính toán – rút gọn biểu thức lũy thừa + Dạng 2. So sánh các lũy thừa hay căn số + Dạng 3. Bài toán lãi kép Vấn đề 2. Logarit + Dạng 1. Tính toán – rút gọn biểu thức có chứa logarit + Dạng 2. So sánh hai logarit + Dạng 3. Biểu diễn một logarit theo các logarit khác + Dạng 4. Chứng minh đẳng thức chứa logarit + Dạng 5. Bài toán lãi kép Vấn đề 3. Hàm số mũ – hàm số logarit + Dạng 1. Tìm tập xác định của hàm số + Dạng 2. Đạo hàm của hàm số mũ và logarit + Dạng 3. Gtln và gtnn của hàm số mũ và logarit + Dạng 4. Khảo sát sự biến thiên và vẽ đồ thị hàm số + Dạng 5. Tìm giới hạn của các hàm số mũ và logarit + Dạng 6. Dùng tính đơn điệu để chứng minh bất đẳng thức chứ mũ logarit [ads] Vấn đề 4. Phương trình mũ + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ + Dạng 3. Phương pháp logarit hóa + Dạng 4. Phương pháp đưa về phương trình tích + Dạng 5. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số Vấn đề 5. Bất phương trình mũ + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ + Dạng 3. Phương pháp logarit hóa Vấn đề 6. Phương trình logarit + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ + Dạng 3. Phương pháp mũ hóa + Dạng 4. Phương pháp đưa về phương trình tích + Dạng 5. Phương pháp sử dụng bất đẳng thức, tính đơn điệu của hàm số Vấn đề 7. Bất phương trình logarit + Dạng 1. Phương pháp đưa về cùng cơ số + Dạng 2. Phương pháp đặt ẩn phụ Vấn đề 8. Hệ phương trình mũ – logarit Vấn đề 9. Phương trình. Hệ phương trình bất phương trình có tham số Bài tập trắc nghiệm + Vấn đề 1. Lũy thừa + Vấn đề 2. Logarit + Vấn đề 3. Hàm số mũ – hàm số logarit – hàm số lũy thừa + Vấn đề 4. Phương trình – bất phương trình mũ + Vấn đề 5. Phương trình – bất phương trình logarit + Vấn đề 6. Bài tập trắc nghiệm (trích từ 7 đề của bgd) Bảng đáp án bài tập trắc nghiệm
Phân loại dạng và phương pháp giải nhanh chuyên đề mũ và logarit - Nguyễn Vũ Minh
Tài liệu phân dạng và hướng dẫn cách giải các bài toán trắc nghiệm trong chuyên đề phương trình mũ và logarit. Nội dung tài liệu gồm các phần: + Phần I: Lũy thừa – Hàm số lũy thừa A. Lũy thừa B. Hàm số lũy thừa C. So sánh mũ – lũy thừa [ads] + Phần II: Logarit A. Công thức logarit B. Hàm số logarit C. So sánh logarit D. Đạo hàm mũ – logarit