Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng hàm số lũy thừa, hàm số mũ và hàm số logarit để giải các bài toán thực tế liên quan

Tài liệu 63 trang giới thiệu các ứng dụng hàm số lũy thừa, hàm số mũ và hàm số logarit đế giải quyết các bài toán thực tế liên quan. Các bài toán về hàm số lũy thừa hàm số mũ và hàm số logarit là các bài toán rất hay và có nhiều ứng dụng trong thực tế. 1. Các ứng dụng trong kinh tế: Bài toán lãi suất trong gửi tiền vào ngân hàng, bài toán vay, mua trả góp … 2. Các ứng dụng trong lĩnh vực đời sống và xã hội: Bài toán tăng trưởng về dân số …. 3. Các ứng dụng trong lĩnh vực khoa học kỹ thuật: Bài toán liên quan đến sự phóng xạ, tính toán các cơn dư chấn do động đất, cường độ và mức cường độ âm thanh … [ads] Trước khi đọc các phần tiếp theo của tài liệu, các em thử một lần nhớ lại có khi nào ta từng đi theo bố (mẹ) vào ngân hàng: để gửi tiền tiết kiệm, hoặc vay tiền ngân hàng, hoặc làm một thẻ ATM mới … ở đó các em sẽ thay được những bảng thông báo về lãi suất tiền gửi, lãi suất cho vay, các em nghe được các nhân viên ngân hàng tư vấn về hình thức gửi tiền (vay tiền) và cách tính lãi suất. Liệu có em nào thắc mắc tư hỏi rằng lãi suất là gì? Có các hình thức tính lãi suất nào thường gặp? Câu trả lời sẽ có trong các phần tiếp theo của tài liệu. Trong tài liệu nhỏ này các em cũng tìm được những câu trả lời cho các câu hỏi như: Dân số các quốc gia được dự báo tăng hay giảm bằng cách nào? Độ to (nhỏ) của âm thanh được tính toán như thế nào? … Qua nội dung này, chúng ta sẽ biết vận dụng các kiến thức đã học về hàm số lũy thừa, hàm số mũ và hàm số logarit vào đế giải quyết một số bài toán thực tế liên quan các chủ đề nêu ở trên. Các chủ đề trong bài toán, được thể hiện qua các phần sau: + Phần A: Tóm tắt lí thuyết và các kiến thức liên quan + Phần B: Các bài toán ứng dụng thực tế + Phần C: Các bài toán trắc nghiệm khách quan + Phần D: Đáp án và hướng dẫn giải câu hỏi trắc nghiệm Bạn đọc có thể xem thêm ứng dụng của các kiến thức tích phân, hình học vào giải quyết các bài toán thực tế dưới đây: + Ứng dụng tích phân để giải bài toán thực tiễn – Trần Văn Tài + Bài toán thực tế liên quan đến hình học – Nguyễn Bá Hoàng

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm hàm số lũy thừa, hàm số mũ và hàm số logarit
Tài liệu gồm 52 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề hàm số lũy thừa, hàm số mũ và hàm số logarit, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. HÀM SỐ LŨY THỪA. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Tính chất của hàm số lũy thừa trên khoảng (0;+∞). 5. Đồ thị hàm số lũy thừa y = x^a trên khoảng (0;+∞). II. HÀM SỐ MŨ. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Đồ thị hàm số y = a^x. III. HÀM SỐ LOGARIT. 1. Định nghĩa. 2. Tập xác định. 3. Đạo hàm. 4. Tính chất. 5. Đồ thị hàm số y = loga x. CÁC DẠNG TOÁN: + Dạng 1. Tìm tập xác định của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 2. Tính đạo hàm của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 3. Tính đơn điệu và cực trị của hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 4. Giá trị lớn nhất và nhỏ nhất hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 5. Đồ thị hàm số lũy thừa, hàm số mũ và hàm số logarit. + Dạng 6. Một số bài toán nâng cao về hàm số lũy thừa, hàm số mũ và hàm số logarit. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm công thức logarit
Tài liệu gồm 28 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề công thức logarit, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. 1. Định nghĩa. 2. Các công thức Logarit. 3. Logarit thập phân, logarit tự nhiên. DẠNG 1. SỬ DỤNG CÔNG THỨC LOGARIT. DẠNG 2: BIỂU DIỄN BIỂU THỨC LOGARIT THEO BIỂU THỨC CHO TRƯỚC. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm công thức lũy thừa
Tài liệu gồm 12 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề công thức lũy thừa, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 2. I. KHÁI NIỆM LŨY THỪA 1. Lũy thừa với số mũ nguyên. 2. Căn bậc n. 3. Lũy thừa với số mũ hữu tỷ. 4. Lũy thừa với số mũ vô tỷ. II. TÍNH CHẤT CỦA LŨY THỪA VỚI SỐ MŨ THỰC Tính chất 1. Tính chất 2: Tính đồng biến, nghịch biến. Tính chất 3: So sánh lũy thừa khác cơ số. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Mũ và logarit trong đề thi THPT môn Toán (2017 - 2020)
Tài liệu gồm 63 trang, tuyển chọn các câu hỏi và bài tập trắc nghiệm chuyên đề mũ và logarit có đáp án, được trích từ các đề thi tốt nghiệp THPT Quốc gia môn Toán của Bộ Giáo dục và Đào tạo và các đề thi thử tốt nghiệp THPT Quốc gia môn Toán của các trường THPT và sở Giáo dục và Đào tạo trên toàn quốc, từ năm học 2016 – 2017 đến năm học 2019 – 2020. Tài liệu giúp học sinh lớp 12 tham khảo khi học chương trình Giải tích 12 chương 2 (Hàm số lũy thừa, hàm số mũ và hàm số logarit) và ôn thi tốt nghiệp Trung học Phổ thông môn Toán năm học 2020 – 2021. A. MŨ VÀ LOGARIT TRONG ĐỀ THI TỐT NGHIỆP THPT QG 1. MỨC ĐỘ NHẬN BIẾT (Trang 2). 2. MỨC ĐỘ THÔNG HIỂU (Trang 5). 3. MỨC ĐỘ VẬN DỤNG THẤP (Trang 11). 4. MỨC ĐỘ VẬN DỤNG CAO (Trang 13). 5. BÀI TOÁN THỰC TẾ (Trang 16). B. MŨ VÀ LOGARIT TRONG CÁC ĐỀ THI THỬ 1. MỨC ĐỘ NHẬN BIẾT (Trang 20). 2. MỨC ĐỘ THÔNG HIỂU (Trang 27). 3. MỨC ĐỘ VẬN DỤNG THẤP (Trang 35). 4. MỨC ĐỘ VẬN DỤNG CAO (Trang 43). 5. BÀI TOÁN THỰC TẾ (Trang 53). C. BẢNG ĐÁP ÁN