Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Bát Tràng - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Bát Tràng, huyện Gia Lâm, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa kì 2 Toán 9 năm 2023 – 2024 trường THCS Bát Tràng – Hà Nội : + Hai tổ sản xuất được giao làm 800 sản phẩm trong một thời gian quy định. Nhờ tăng năng suất lao động, tổ một vượt mức 10%, tổ hai vượt mức 20% nên cả hai tổ đã làm được 910 sản phẩm. Tính số sản phẩm mỗi tổ phải làm theo kế hoạch. + Cho đường tròn (O;R) và M là một điểm nằm ngoài (O), từ M kẻ hai tiếp tuyến MA, MB tới đường tròn(A, B là các tiếp điểm). Một đường thẳng (d) đi qua M cắt (O) tại 2 điểm C và D (MC < MD (d) không qua O, điểm D, C thuộc nửa mặt phẳng bờ OM có chứa điểm A). a) Chứng minh bốn điểm A, O, B, M thuộc một đường tròn. b) Chứng minh: MA2 = MC.MD. c) Gọi I là trung điểm của DC, đường thẳng AI cắt đường tròn (O) tại điểm thứ hai K (K khác A). Chứng minh: tứ giác MAIO nội tiếp và BK // MD. d) Giả sử dây CD cố định, đường thẳng (d’) vuông góc với MO tại O và cắt tia MA, MB lần lượt tại E và F. Xác định vị trí của M để diện tích tam giác MFE có giá trị nhỏ nhất.

Nguồn: toanmath.com

Đọc Sách

Đề thi giữa học kì 2 Toán 9 năm 2020 - 2021 trường THCS Đông Thạnh - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra chất lượng giữa học kì 2 Toán 9 năm học 2020 – 2021 trường THCS Đông Thạnh, thành phố Hồ Chí Minh. Trích dẫn đề thi giữa học kì 2 Toán 9 năm 2020 – 2021 trường THCS Đông Thạnh – TP HCM : + Cho phương trình 4×2 + 4x − 3 = 0 (x là ẩn số). Không giải phương trình, hãy tính x21 + x22 + 3×1 + 3×2 (với x1, x2 là hai nghiệm của phương trình đã cho). + Có 25 quyển vở gồm 2 loại. Vở loại một giá 13000 đồng một quyển; vở loại hai giá 10000 đồng một quyển. Số tiền mua 25 quyển vở là 280000 đồng. Tính số quyển vở mỗi loại. + Cho hình vẽ. Biết đường tròn tâm O có sđBmC = 80◦, sđDnE = 60◦. Tính góc BOC và góc DAE.
Đề thi giữa học kỳ 2 Toán 9 năm 2018 - 2019 phòng GDĐT Tây Hồ - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi kiểm tra chất lượng giữa học kỳ 2 môn Toán 9 năm học 2018 – 2019 phòng Giáo dục và Đào tạo quận Tây Hồ, thành phố Hà Nội. Trích dẫn đề thi giữa học kỳ 2 Toán 9 năm 2018 – 2019 phòng GD&ĐT Tây Hồ – Hà Nội : + Hai vòi nước cùng chảy vào bể không có nước thì sau 12 giờ đầy bể. Nếu người ta mở cả hai vòi chảy trong 4 giờ rồi khóa vòi hai lại và để vòi một chảy tiếp 14 giờ nữa thì mới đầy bể. Tính thời gian mỗi vòi chảy một mình đầy bể. + Cho đường tròn (O; R) và đường thẳng d không có điểm chung với đường tròn. Từ điểm M thuộc đường thẳng d kẻ hai tiếp tuyến MA, MB tới đường tròn. Hạ OH vuông góc với đường thẳng d tại H. Nối AB cắt OH tại K, cắt OM tại I. Tia OM cắt đường tròn (O; R) tại E. a) Chứng minh AOBM là tứ giác nội tiếp b) Chứng minh OI.OM = OK.OH c) Chứng minh E là tâm đường tròn nội tiếp tam giác MAB d) Tìm vị trí của M trên đường thẳng d để diện tích tam giác OIK có giá trị lớn nhất. + Cho hai số dương x, y thỏa mãn x + y = 1. Tìm giá trị nhỏ nhất của biểu thức A.
Đề thi giữa kì 2 Toán 9 năm 2018 - 2019 trường Nguyễn Tất Thành - Hà Nội
THCS. giới thiệu đến quý thầy, cô và các em học sinh lớp 9 đề thi giữa kì 2 Toán 9 năm học 2018 – 2019 trường THCS&THPT Nguyễn Tất Thành, thành phố Hà Nội.
10 đề thi chất lượng giữa học kỳ 2 Toán 9
THCS. giới thiệu đến bạn đọc tài liệu tuyển tập 10 đề thi chất lượng giữa học kỳ 2 Toán 9, bộ đề được biên soạn bởi thầy Lương Tuấn Đức nhằm giúp các em học sinh lớp 9 tự ôn tập để chuẩn bị cho kỳ kiểm tra định kỳ môn Toán 9 giai đoạn giữa học kỳ 2 của năm học. Các đề thi chất lượng giữa học kỳ 2 Toán 9 trong tài liệu được biên soạn theo hình thức tự luận với 05 câu hỏi và bài toán ở mỗi đề thi, đây là dạng đề được nhiều trường Trung học Cơ sở và Phòng Giáo dục & Đào tạo áp dụng, học sinh làm bài trong 90 phút. [ads] Trích dẫn tài liệu 10 đề thi chất lượng giữa học kỳ 2 Toán 9 : + Cho nửa đường tròn (O;R), đường kính AB, K là điểm chính giữa cung AB. Trên cung KB lấy một điểm M (M khác K, B). Trên tia AM lấy điểm N sao cho AN = BM. Kẻ dây BP song song với KM, Q là giao điểm của AP với BM, E là giao điểm của BP và AM. 1. Chứng minh PQME là tứ giác nội tiếp. 2. Chứng minh hai tam giác AKN, BKM bằng nhau và AM.BE = AN.AQ. 3. Gọi R, S lần lượt là giao điểm thứ hai của QA, QB với đường tròn ngoại tiếp tam giác OMP. Chứng minh khi M di động trên cung KB thì trung điểm I của RS luôn nằm trên một đường cố định. + Trong quý I năm 2018, hai đội thuyền đánh cá bắt được tổng cộng 360 tấn cá. Sang quý I năm 2019 đội thứ nhất vượt mức 10% và đội thứ hai vượt mức 8% nên cả hai đội đánh bắt được 393 tấn. Hỏi quý I mỗi năm mỗi đội đánh bắt được bao nhiêu tấn cá? + Cho parabol (P): y = x^2 và đường thẳng d: y = ax – a. 1. Tìm a để đường thẳng d cắt trục tung tại điểm có hoành độ nhỏ hơn 3. 2. Tìm a để (P) cắt d tại hai điểm M(x1;y1), N(x2;y2) thỏa mãn |x1 – x2| ≥ √5.