Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 10 môn Toán chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc

Nội dung Đề khảo sát lớp 10 môn Toán chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc Bản PDF Nhằm giúp các em học sinh khối 10 của nhà trường ôn lại các kiến thức môn Toán đã học từ năm học trước, để có sự chuẩn bị tốt nhất cho năm học mới, trường THPT Liễn Sơn, tỉnh Vĩnh Phúc đã tổ chức kỳ thi khảo sát kiến thức đầu năm Toán lớp 10 năm học 2019 – 2020. Đề khảo sát Toán lớp 10 chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc gồm 02 trang, đề được biên soạn theo dạng đề trắc nghiệm khách quan kết hợp với tự luận, trong đó phần trắc nghiệm chiếm 3 điểm với 12 câu, phần tự luận chiếm 7 điểm với 5 câu, thời gian làm bài kiểm tra là 90 phút, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát Toán lớp 10 chuẩn bị năm học 2019 – 2020 trường Liễn Sơn – Vĩnh Phúc : + Một đội xe phải chuyên chở 36 tấn hàng. Trước khi làm việc, đội xe đó được bổ sung thêm 3 xe nữa nên mỗi xe chở ít hơn 1 tấn so với dự định. Hỏi đội xe lúc đầu có bao nhiêu xe? Biết rằng số hàng chở trên tất cả các xe có khối lượng bằng nhau. + Cho nửa đường tròn (O) đường kính AB. Gọi C là điểm cố định thuộc đoạn thẳng OB (C khác O và B). Dựng đường thẳng d vuông góc với AB tại điểm C, cắt nửa đường tròn (O) tại điểm M. Trên cung nhỏ MB lấy điểm N bất kỳ (N khác M và B), tia AN cắt đường thẳng d tại điểm F, tia BN cắt đường thẳng d tại điểm E. Đường thẳng AE cắt nửa đường tròn (O) tại điểm D (D khác A). a) Chứng minh: AD.AE = AC.AB. b) Chứng minh: Ba điểm B, F, D thẳng hàng và F là tâm đường tròn nội tiếp tam giác CDN. + Tam giác đều ABC có cạnh 10 cm nội tiếp trong đường tròn, thì bán kính đường tròn là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi khảo sát chất lượng Toán 10 năm học 2016 - 2017 trường THPT Thạch Thành 1 - Thanh Hóa lần 4
Đề thi khảo sát chất lượng Toán 10 năm học 2016 – 2017 trường THPT Thạch Thành 1 – Thanh Hóa lần 4 gồm 7 bài tập tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Cho hàm số: y = x^2 – 4x + c a) Tìm c biết rằng đồ thị của hàm số là một Parabol đi qua điểm A(2;-1) b) Vẽ đồ thị của hàm số ứng với giá trị c tìm được + Cho tam giác đều ABC cạnh a (a > 0). MNPQ là hình chữ nhật nội tiếp tam giác ABC (như hình vẽ). Tính diện tích lớn nhất có thể đạt được của hình chữ nhật MNPQ theo a. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ B là: x + 3y – 18 = 0, phương trình đường trung trực của đoạn BC là: 3x + 19y – 279 = 0, đỉnh C thuộc đường thẳng d: 2x – y + 5 = 0. Tìm tọa độ điểm A biết rằng góc BAC = 135 độ.
Đề kiểm tra chất lượng bồi dưỡng Toán 10 năm học 2016 - 2017 trường THPT Hậu Lộc 4 - Thanh Hóa
Đề kiểm tra chất lượng bồi dưỡng Toán 10 năm học 2016 – 2017 trường THPT Hậu Lộc 4 – Thanh Hóa gồm 12 câu hỏi trắc nghiệm và 3 bài tập tự luận, có hướng dẫn giải và thang điểm.
Đề kiểm tra chất lượng môn Toán lớp 10 trường THPT Hàn Thuyên - Bắc Ninh lần 2
Đề kiểm tra chất lượng môn Toán lớp 10 trường THPT Hàn Thuyên – Bắc Ninh lần 2 gồm 50 câu hỏi trắc nghiệm, có đáp án.
Đề kiểm tra khảo sát môn Toán lớp 10 trường THPT Thuận Thành 1 - Bắc Ninh
Đề kiểm tra khảo sát môn Toán lớp 10 trường THPT Thuận Thành 1 – Bắc Ninh gồm 50 câu hỏi trắc nghiệm. Trích một số bài toán trong đề: + Người ta dự định dùng hai loại nguyên liệu để chiết xuất ít nhất 140kg hóa chất A và 9kg hóa chất B. Từ mỗi tấn nguyên liệu loại I giá 4 triệu đồng, có thể chiết xuất được 20kg hóa chất A và 0,6kg hóa chất B. Từ mỗi tấn nguyên liệu loại II giá 3 triệu đồng, có thể chiết xuất được 10kg hóa chất A và 1,5kg hóa chất B. Hỏi phải dùng bao nhiêu tấn nguyên liệu mỗi loại để chi phí mua nguyên liệu ít nhất, biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp không quá 10 tấn nguyên liệu loại I và không quá 9 tấn nguyên liệu loại II? + Tìm độ dài hai cạnh của một tam giác vuông biết rằng: Khi ta tăng mỗi cạnh 1 cm thì diện tích tăng 5,5 cm2; khi ta giảm chiều dài cạnh này 3 cm và cạnh kia 2 cm thì diện tích giảm 9 cm2. Đáp án đúng là? + Tìm khẳng định SAI trong các khẳng định sau: A. Phương sai luôn luôn lớn hơn độ lệch chuẩn B. Phương sai càng lớn thì độ phân tán của các giá trị quanh số trung bình càng lớn C. Phương sai luôn luôn là 1 số dương D. Phương sai là bình phương của độ lệch chuẩn