Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi Toán 12 THPT năm 2018 - 2019 sở GDĐT Cần Thơ

Ngày 27 tháng 02 năm 2019, sở Giáo dục và Đào tạo Cần Thơ tổ chức kỳ thi chọn học sinh giỏi khối THPT cấp thành phố lớp 12 môn Toán năm học 2018 – 2019. Đề thi học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ gồm 02 trang với 08 bài toán tự luận, học sinh làm bài thi trong 180 phút, đề thi có lời giải chi tiết (lời giải được trình bày bởi quý thầy, cô giáo nhóm Toán VD – VDC). Trích dẫn đề thi học sinh giỏi Toán 12 THPT năm 2018 – 2019 sở GD&ĐT Cần Thơ : + Một lớp học trong một trường đại học có 60 sinh viên, trong đó có 40 sinh viên học tiếng Anh, 30 sinh viên học tiếng Pháp và 20 sinh viên học cả tiếng Anh và tiếng Pháp. Chọn ngẫu nhiên 2 sinh viên của lớp học này. Tính xác suất để 2 sinh viên được chọn không học ngoại ngữ. Biết rằng trường này chỉ dạy hai ngoại ngữ là tiếng Anh và tiếng Pháp. [ads] + Năm bạn học sinh Tính, Nghĩa, Tuấn, Phú và Thuận ở chung một phòng trong ký túc xá của một trường trung học phô thông. Một hôm, người quản lý ký túc xá đến phòng của năm học sinh này để xác định lại hộ khẩu nhà của từng học sinh. Vì đều là học sinh giỏi toán nên các học sinh không trả lời trực tiếp mà nói với người quản lý ký túc xá như sau: – Tính: “Nhà bạn Phú ở Thới Lai còn nhà em ở Cờ Đỏ”. – Nghĩa: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Tuấn ở Ô Môn”. – Tuấn: “Nhà em cũng ở Cờ Đỏ còn nhà bạn Phú ở Thốt Nốt”. – Phú: “Nhà em ở Thới Lai còn nhà bạn Thuận ở Ninh Kiều”. – Thuận: “Nhà em ở Ninh Kiều còn nhà bạn Tính ở Thốt Nốt. Em hãy giúp người quản lý ký túc xá xác định đúng hộ khẩu nhà của các học sinh trên. Biết răng trong câu trả lời của mỗi học sinh đều có một phần đúng và một phần sai đồng thời mỗi địa phương là địa chỉ hộ khâu của đúng một học sinh. + Một nhà sản xuất sữa bột dành cho trẻ em cần thiết kế bao bì cho loại sản phẩm mới. Theo yêu cầu của lãnh đạo nhà máy, hộp sữa mới có dạng hình hộp chữ nhật với đáy là hình vuông hoặc có dạng một hình trụ. Biết rằng hộp sữa mới có thể tích bằng 1dm3. Hãy giuýp lãnh đạo nhà máy thiết kế hộp sữa này sao cho vật liệu sử dụng làm bao bì là ít nhất.

Nguồn: toanmath.com

Đọc Sách

Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 - 2021 sở GDĐT Hưng Yên
Đề chọn đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Hưng Yên gồm 02 bài thi; bài thi thứ nhất gồm 04 bài toán, thời gian làm bài 180 phút; bài thi thứ hai gồm 03 bài toán, thời gian làm bài 180 phút; kỳ thi được diễn ra vào ngày 09 và 10 tháng 09 năm 2020.
Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 - 2021 sở GDĐT Bình Định
Thứ Hai ngày 09 tháng 11 năm 2020, sở Giáo dục và Đào tạo tỉnh Bình Định tổ chức kỳ thi lập đội tuyển tham dự kỳ thi học sinh giỏi Toán cấp Quốc gia năm học 2020 – 2021. Đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 180 phút. Trích dẫn đề lập đội tuyển thi HSG Toán Quốc gia năm 2020 – 2021 sở GD&ĐT Bình Định : + Cho tam giác nhọn ABC không cân và nội tiếp đường tròn (O). Trong tam giác ABC lấy điểm P sao cho AP vuông góc với BC. Kẻ PE, PF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC). Đường tròn ngoại tiếp tam giác AEF cắt đường tròn (O) tại điểm thứ hai là G (khác điểm A). Chứng minh rằng ba đường thẳng GP, BF, CE đồng quy tại một điểm. + Cho đường tròn tâm O và tam giác nhọn ABC nội tiếp đường tròn (O) có trực tâm H, trong đó AB < BC. Trên tia BO kéo dài lấy điểm D sao cho ADC = ABC. Một đường thẳng đi qua điểm H song song với đường thẳng BC cắt cung nhỏ AC tại điểm E. Chứng minh rằng BH = DE. + Cho n là số nguyên dương không nhỏ hơn 3 và các điểm A1, A2 … An cùng nằm trên một đường tròn. Có tối đa bao nhiêu tam giác nhọn có đỉnh là ba điểm trong số các điểm trên.
Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 - 2021 sở GDĐT Quảng Trị
Ngày … tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Quảng Trị tổ chức kỳ thi chọn đội tuyển học sinh giỏi văn hóa lớp 12 THPT dự thi Quốc gia môn Toán năm học 2020 – 2021. Đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị gồm hai vòng thi: đề thi vòng 1 gồm 04 câu, đề thi vòng 2 gồm 03 câu. Trích dẫn đề chọn đội tuyển HSG Toán 12 THPT năm 2020 – 2021 sở GD&ĐT Quảng Trị : + Một bảng n x n (n >= 2) được chia thành các hình vuông đơn vị. Mỗi hình vuông đơn vị đó được tô màu đỏ hoặc màu xanh. Hỏi có bao nhiêu cách tô màu sao cho mỗi hình vuông 2 x 2 có đúng hai hình vuông được tô màu đỏ và hai hình vuông được tô màu xanh? + Cho tam giác ABC cân tại A. Các điểm D, E lần lượt thuộc các cạnh AB, AC sao cho ED = EC. Gọi M là trung điểm DB, N là giao điểm của EM và BC. Chứng minh rằng góc DNB = góc DCA. + Cho tam giác ABC nhọn, không cân, nội tiếp (O). Các tiếp tuyến của (O) tại B và C cắt nhau tại D. Gọi M là trung điểm của BC, E là giao điểm của đường thẳng AC và BC, F (F khác A) là giao điểm thứ hai của (O) và đường tròn ngoại tiếp tam giác AME, N (N khác A) là giao điểm thứ hai của đường thẳng AM và (O). Chứng minh rằng đường thẳng FN đi qua trung điểm của MD.
Đề chọn học sinh giỏi tỉnh Toán 12 năm 2020 - 2021 sở GDĐT Hải Dương
Thứ Tư ngày 21 tháng 10 năm 2020, sở Giáo dục và Đào tạo tỉnh Hải Dương tổ chức kỳ thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2020 – 2021. Đề chọn học sinh giỏi tỉnh Toán 12 năm học 2020 – 2021 sở GD&ĐT Hải Dương gồm có 05 bài toán tự luận, đề thi gồm có 01 trang, thời gian làm bài 180 phút. Trích dẫn đề chọn học sinh giỏi tỉnh Toán 12 năm 2020 – 2021 sở GD&ĐT Hải Dương : + Kết thúc đợt Hội học chào mừng ngày Nhà giáo Việt Nam, lớp 12A có 10 bạn được trao thưởng trong đó có An và Bình. Phần thưởng để trao cho 10 bạn gồm 5 quyển sách Hóa, 7 quyển sách Toán, 8 quyển sách Tiếng Anh (trong đó các quyển sách cùng môn là giống nhau). Mỗi bạn sẽ được nhận 2 quyển sách khác loại. Tìm xác suất để An và Bình có phần thưởng giống nhau. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có B(-1;4). Gọi D, E(-1;2) lần lượt là chân đường cao kẻ từ A, B và M là trung điểm của đoạn thẳng AB. Biết I(-3/2;7/2) là tâm đường tròn ngoại tiếp tam giác DEM. Tìm tọa độ đỉnh C của tam giác ABC. + Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và góc BAD = 120°. a) Tính thể tích khối chóp S.ABCD biết SA = SB = SC và khoảng cách từ điểm A đến mặt phẳng (SCD) bằng 3a/4. b) Tính thể tích khối chóp S.ABC biết góc giữa hai mặt phẳng (ABC), (SBC) bằng 45° và tam giác SAB vuông cân tại A.