Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG Toán 12 năm 2020 - 2021 trường THPT Hưng Nhân - Thái Bình

Ngày 28 tháng 11 năm 2020, trường THPT Hưng Nhân, tỉnh Thái Bình tổ chức kỳ thi khảo sát chất lượng học sinh giỏi khối 12 môn Toán năm học 2020 – 2021. Đề khảo sát HSG Toán 12 năm 2020 – 2021 trường THPT Hưng Nhân – Thái Bình mã đề 101 gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát HSG Toán 12 năm 2020 – 2021 trường THPT Hưng Nhân – Thái Bình : + Một kim tự tháp Ai Cập được xây dựng khoảng 2500 năm trước công nguyên. Kim tự tháp này là một khối chóp tứ giác đều có chiều cao 150 m, cạnh đáy dài 220 m. Hỏi diện tích xung quanh của kim tự tháp đó bằng bao nhiêu? (diện tích xung quanh của hình chóp là tổng diện tích của các mặt bên). + Ông An gửi 320 triệu đồng vào ngân hàng ACB và VietinBank theo phương thức lãi kép. Số tiền thứ nhất gửi vào ngân hàng ACB với lãi suất 2,1% một quý trong thời gian 15 tháng. Số tiền còn lại gửi vào ngân hàng VietinBank với lãi suất 0,73% một tháng trong thời gian 9 tháng. Biết tổng số tiền lãi ông An nhận được ở hai ngân hàng là 26670725,95 đồng. Hỏi số tiền ông An lần lượt ở hai ngân hàng ACB và VietinBank là bao nhiêu (số tiền được làm tròn tới hàng đơn vị)? A. 120 triệu đồng và 200 triệu đồng. B. 200 triệu đồng và 120 triệu đồng. C. 140 triệu đồng và 180 triệu đồng. D. 180 triệu đồng và 140 triệu đồng. + Giả sử trong trận chung kết AFF Cup 2018, đội tuyển Việt Nam phải phân định thắng thua trên chấm đá phạt 11 m. Biết xác suất để mỗi cầu thủ Việt Nam thực hiện thành công quả đá 11 m của mình đều là 0,8. Gọi p là xác suất để đội tuyển Việt Nam thực hiện thành công từ 4 quả trở lên trong 5 lượt sút đầu tiên. Khẳng định nào sau đây đúng?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi Toán 12 năm học 2020 - 2021 sở GDĐT Hà Nam
Ngày … tháng 09 năm 2020, sở Giáo dục và Đào tạo tỉnh Hà Nam tổ chức kỳ thi chọn học sinh giỏi lớp 12 và thành lập đội tuyển tham dự kỳ thi chọn học sinh giỏi Quốc gia môn Toán năm học 2020 – 2021. Đề thi chọn học sinh giỏi Toán 12 năm học 2020 – 2021 sở GD&ĐT Hà Nam gồm 01 trang với 05 bài toán tự luận, thang điểm 20, thời gian làm bài 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 12 năm học 2020 – 2021 sở GD&ĐT Hà Nam : + Xếp 35 học sinh, trong đó có bốn bạn Dũng, Minh, Công, Đoàn thành một hàng ngang. Hỏi có tất cả bao nhiêu cách xếp hàng, mà trong mỗi cách xếp hàng không có ba bạn nào trong bốn bạn Dũng, Minh, Công, Đoàn đứng ở ba vị trí liên tiếp. + Cho hàm số f(x) = (x^3 – 3x^2 + 3x + 5)/(x + 1). 1. Chứng minh đồ thị hàm số có ba điểm cực trị không thẳng hàng. 2. Gọi A, B, C là ba điểm cực trị của đồ thị hàm số. Tính diện tích tam giác ABC. + Cho tứ giác ABCD cố định, có hai đường chéo AC, BD cắt nhau tại P. Đường trung trực của các đoạn thẳng AC và BD cắt nhau tại K. Một đường thẳng d thay đổi đi qua K, cắt đường tròn ngoại tiếp tam giác OAB tại Q, R. Chứng minh rằng trực tâm của tam giác POR luôn nằm trên một đường tròn cố định, khi đường thẳng d thay đổi.
Đề thi HSG Toán 12 năm 2020 - 2021 trường THPT chuyên Lê Khiết - Quảng Ngãi
Thứ Bảy ngày 19 tháng 09 năm 2020, trường THPT chuyên Lê Khiết, tỉnh Quảng Ngãi tổ chức kỳ thi chọn học sinh giỏi lớp 12 môn Toán năm học 2020 – 2021. Đề thi HSG Toán 12 năm 2020 – 2021 trường THPT chuyên Lê Khiết – Quảng Ngãi gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề). Trích dẫn đề thi HSG Toán 12 năm 2020 – 2021 trường THPT chuyên Lê Khiết – Quảng Ngãi : + Cho một đa giác đều có 170 đường chéo. Chọn ngẫu nhiên 3 đỉnh từ các đỉnh của đa giác đó. Tính xác suất để tam giác tạo ra từ các đỉnh được chọn là tam giác vuông không cân. + Có bao nhiêu số nguyên dương n < 2021 để đa thức x^2^n + x + 1 chia hết cho đa thức x^2 + x + 1? + Trên bảng có ghi mười số 1; 2; 3; 4; . . . ; 10. Ở mỗi bước ta xóa đi hai số a, b rồi thêm vào số mới a + b + ab/f(a;b) với f(a;b) là tổng tất cả các số còn ghi trên bảng trừ hai số a, b. Cứ làm như thế cho đến khi trên bảng chỉ còn hai số x, y (x >= y). a) Gọi Sk là tổng của tất cả các tích của các cặp số còn ghi trên bảng ở bước thứ k. Chứng minh rằng Si = Sk với mọi i, k. b) Tìm giá trị lớn nhất có thể có của x.
Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 - 2021 trường chuyên Hùng Vương - Bình Dương
Ngày … tháng 09 năm 2020, trường THPT chuyên Hùng Vương, tỉnh Bình Dương tổ chức kỳ thi thử cho đội tuyển học sinh giỏi môn Toán vòng 1 lần 2 năm học 2020 – 2021. Đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương gồm có 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 180 phút (không kể thời gian phát đề), thí sinh không được sử dụng tài liệu và máy tính khi làm bài. Trích dẫn đề thi thử HSG Toán vòng 1 lần 2 năm 2020 – 2021 trường chuyên Hùng Vương – Bình Dương : + Cho tam giác ABC nhọn nội tiếp đường tròn (O), có trực tâm H. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Đường tròn (MNP) lần lượt cắt các đường tròn (MCA), (MAB) tại điểm thứ hai là E, F. Giả sử ME, MF theo thứ tự cắt AC, AB tại K, L. a) Chứng minh rằng OH vuông góc với KL tại điểm S. b) Gọi G là trọng tâm của tam giác ABC. Các điểm Y, Z lần lượt là hình chiếu của B, C lên AC, AB. Gọi X là giao điểm của KZ và LY. Chứng minh rằng A, G, S, X cùng nằm trên một đường tròn. + Tìm tất cả các đa thức P(x) với hệ số thực sao cho P(a)^2 + P(b)^2 + P(c)^2 với mọi bộ số (a;b;c) thỏa mãn ab + bc + ca + 1 = 0. + Tìm tất cả các bộ ba số tự nhiên (m;n;k) thỏa mãn 5^m + 7^n = k^3.
Đề thi HSG Toán 12 (vòng 2) năm 2020 - 2021 trường chuyên Nguyễn Du - Đắk Lắk
Thứ Năm ngày 10 tháng 09 năm 2020, trường THPT chuyên Nguyễn Du, tỉnh Đắk Lắk tổ chức kỳ thi chọn đội tuyển học sinh giỏi môn Toán lớp 12 năm học 2020 – 2021 vòng thi số 2. Đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk được biên soạn theo dạng đề tự luận, đề thi gồm có 01 trang với 05 bài toán, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi HSG Toán 12 (vòng 2) năm 2020 – 2021 trường chuyên Nguyễn Du – Đắk Lắk : + Cho tam giác ABC (AC > AB). Lấy hai điểm M, N lần lượt trên AB và AC sao cho MN song song với BC. Gọi P là giao điểm của hai đoạn thẳng BN và CM. Gọi A’ là điểm đối xứng của A qua đường thẳng BC; (w) là đường tròn ngoại tiếp tam giác AMN. a) Gọi E là điểm thuộc đường tròn (w) sao cho AE // MN. Chứng minh rằng: E, P, A’ thẳng hàng. b) Gọi F là giao điểm thứ hai của A’P với đường tròn (w) và I là tâm đường tròn ngoại tiếp tam giác AA’F. Chứng minh IF tiếp xúc với đường tròn ngoại tiếp tam giác BFC. + Cho tập hợp A = {1;2; . . . ; 101}, tô màu ít nhất 50 phần tử của A sao cho: nếu a và b thuộc A (a, b không nhất thiết phân biệt) được tô màu và a + b thuộc A thì a + b cũng được tô màu. Gọi S là tổng tất cả các số không được tô màu của A. Tìm giá trị lớn nhất của S. + Tìm tất cả n tự nhiên để 2^2^2^ . . .  ^2 (n số 2) – 2 viết được thành a^3 + b^3 + c^3 với a, b, c nguyên.