Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi vào lớp 10 chuyên môn Toán năm 2020 - 2021 sở GDĐT Hà Nội (chuyên)

Đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi diễn ra vào thứ Sáu ngày 17 tháng 07 năm 2020, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi vào lớp 10 chuyên môn Toán năm 2020 – 2021 sở GD&ĐT Hà Nội : + Cho một bảng ô vuông kích thước 6 x 7 (6 hàng, 7 cột) được tạo bởi các ô vuông kích thước 1 x 1. Mỗi ô vuông kích thước 1 x 1 được tô bởi một trong hai màu đen hoặc trắng sao cho trong mọi bảng ô vuông kích thước 2 x 3 hoặc 3 x 2, có ít nhất hai ô vuông kích thước 1 x 1 được tô màu đen có chung cạnh. Gọi m là số ô vuông kích thước 1 x 1 được tô màu đen trong bảng. a) Chỉ ra một cách tô sao cho m = 20. b) Tìm giá trị nhỏ nhất của m. [ads] + Cho tam giác ABC có ba góc nhọn và AB < AC. Gọi (I) là đường tròn nội tiếp tam giác ABC và K là tâm đường tròn bàng tiếp trong góc A của tam giác ABC. Gọi D, E, F lần lượt là chân các đường vuông góc kẻ từ điểm I đến các đường thẳng BC, CA, AB. Đường thẳng AD cắt đường tròn (I) tại hai điểm phân biệt D và M. Đường thẳng qua K song song với đường thẳng AD cắt đường thẳng BC tại N. a) Chứng minh rằng tam giác MFD đồng dạng với tam giác BNK. b) Gọi P là giao điểm của BI và FD. Chứng minh góc BMF bằng góc DMP. c) Chứng minh đường tròn ngoại tiếp tam giác MBC đi qua trung điểm của đoạn thẳng KN. + Cho đa thức P(x) với hệ số thực thỏa mãn P(1) = 3 và P(3) = 7. Tìm đa thức dư trong phép chia đa thức P(x) cho đa thức x^2 – 4x + 3.

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn 50 đề thi tuyển sinh vào lớp 10 chuyên môn Toán
Nhằm đáp ứng nhu cầu tham khảo và rèn luyện các đề tuyển sinh vào lớp 10 chuyên môn Toán, THCS. giới thiệu đến các em học sinh tài liệu tuyển chọn 50 đề thi tuyển sinh vào lớp 10 chuyên môn Toán. Tài liệu gồm 254 trang với các đề thi được biên soạn theo hình thức tự luận, thời gian làm bài 120 phút, tất cả các đề đều có lời giải chi tiết. Trích dẫn tài liệu tuyển chọn 50 đề thi tuyển sinh vào lớp 10 chuyên môn Toán : + Cho tam giác ABC nhọn nội tiếp đường tròn (O) có góc BAC = 45 độ, BC = a. Gọi E, F lần lượt là chân đường vuông góc hạ từ B xuống AC và từ C xuống AB. Gọi I là điểm đối xứng của O qua EF. a) Chứng minh rằng các tứ giác BFOC và AEIF nội tiếp được đường tròn. b) Tính EF theo a. [ads] + Cho phương trình (x – 2)(x^2 – x) + (4m + 1)x – 8m – 2 = 0 (x là ẩn số). Tìm m để phương trình có ba nghiệm phân biệt x1; x2; x3 thỏa mãn điều kiện x1^2 + x2^2 + x3^2 = 11. + Cho phương trình x^2 – 2(m + 1)x + m^2 = 0 (1). Tìm m để phương trình có 2 nghiệm x1; x2 thỏa mãn (x1 – m)^2 + x2 = m + 2.
Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai - Hà Nội
Thứ Tư ngày 22 tháng 05 năm 2019, trường THCS Tân Mai, quận Hoàng Mai, thành phố Hà Nội tổ chức kỳ thi thử môn Toán tuyển sinh vào lớp 10 THPT năm học 2019 – 2020 dành cho học sinh lớp 9 của nhà trường. Đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai – Hà Nội gồm 5 bài toán, đề gồm 1 trang, học sinh làm bài trong khoảng thời gian 90 phút. Trích dẫn đề thi thử vào 10 môn Toán năm 2019 trường THCS Tân Mai – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một xe ô tô cần chạy quãng đường 80km trong thời gian đã dự định. Vì trời mưa nên một phần tư quãng đường đầu xe phải chạy chậm hơn vận tốc dự định là 15km/h. Để đến nơi đúng thời gian dự định nên khi trời tạnh xe phải chạy nhanh hơn vận tốc dự định là 10km/h trên quãng đường còn lại. Tính thời gian dự định của xe ô tô đó. [ads] + Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8 cm. Người ta quay tam giác ABC một vòng quanh AB. Tính diện tích xung quanh và thể tích của hình tạo thành sau khi quay. + Cho tam giác ABC nhọn. Nửa đường tròn đường kính AB cắt các đoạn thẳng CA, CB theo thứ tự tại M, N (khác A, B). Gọi H là giao điểm của A và BM. a) Chứng minh tứ giác CMHN là tứ giác nội tiếp. b) Gọi (O) là đường tròn ngoại tiếp tam giác ABC. Kẻ đường kính CD của đường tròn (O). Chứng minh AH = BD. c) Gọi I là trung điểm của AB. Đường thẳng qua H vuông góc với IH lần lượt cắt các đường thằng CA, CB tại P, Q. Chứng minh H là trung điểm của PQ. d) Giả sử đường tròn tâm O cố định, dây AB cố định. Điểm C thay đổi trên đường tròn (O) nhưng vẫn thỏa mãn tam giác ABC nhọn. Chứng minh rằng bán kính đường tròn ngoại tiếp tam giác CMN không thay đổi.
Đề thi thử Toán vào lớp 10 năm 2019 - 2020 trường Lương Thế Vinh - Hà Nội lần 4
Chủ Nhật ngày 19 tháng 5 năm 2019, trường THCS và THPT Lương Thế Vinh, Hà Nội tổ chức kỳ thi thử tuyển sinh vào lớp 10 THPT môn Toán năm học 2019 – 2020 lần thứ 4. Đề thi thử Toán vào lớp 10 năm 2019 – 2020 trường Lương Thế Vinh – Hà Nội lần 4 gồm 2 trang với 5 bài toán dạng tự luận, thời gian làm bài 120 phút. Trích dẫn đề thi thử Toán vào lớp 10 năm 2019 – 2020 trường Lương Thế Vinh – Hà Nội lần 4 : + Để tiến tới kỉ niệm 30 năm ngày thành lập trường, hội cựu học sinh Lương Thế Vinh, Hà Nội đã đăng kí một phòng tại trường để gặp mặt đại diện các khóa. Lúc đầu, phòng có 120 ghế được xếp thành từng dãy có số ghế trên mỗi dãy như nhau. Nhưng thực tế phải xếp thêm một dãy và mỗi dãy thêm hai ghế thì mới đủ chỗ cho 156 cựu học sinh về dự. Hỏi lúc đầu phòng có mấy dãy ghế và mỗi dãy có bao nhiêu ghế? [ads] + Một hình trục có chiều cao gấp ba lần đường kính đáy. Biết thể tích của nó bằng 162 (cm3). Hãy tính diện tích toàn phần của hình trụ đó. + Cho đường tròn (O;R) và điểm A cố định nằm ngoài đường tròn. Từ A kẻ các tiếp tuyến AB, AC với đường tròn (B và C là các tiếp điểm). Gọi H là giao điểm của OA và BC, kẻ dây MN bất kì đi qua H với M thuộc cung nhỏ BC và BM < CM. a) Chứng minh tứ giác ABOC nội tiếp. b) Chứng minh: HM.HN = HB.HC và góc AMN = góc AON. c) Xác định vị trí của dây MN để AB là tiếp tuyến của đường tròn ngoại tiếp tam giác AMN.
Đề thi thử tuyển sinh lớp 10 môn Toán năm 2019 trường THPT Uông Bí - Quảng Ninh
Đề thi thử tuyển sinh lớp 10 môn Toán năm 2019 trường THPT Uông Bí – Quảng Ninh gồm 1 trang với 5 bài toán dạng tự luận, học sinh có 90 phút để làm bài, kỳ thi nhằm giúp học sinh lớp 9 nắm được dạng đề Toán và thử sức trước khi bước vào kỳ thi tuyển sinh vào lớp 10 THPT năm học 2019 – 2020. Trích dẫn đề thi thử tuyển sinh lớp 10 môn Toán năm 2019 trường THPT Uông Bí – Quảng Ninh : + Cho phương trình x^2 – m(m – 1)x + 5 = 0 (với m là tham số). a. Giải phương trình khi m = 3. b. Tìm m để phương trình có hai nghiệm là hai số nguyên. [ads] + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình. Trên vịnh Hạ Long, vào lúc 6 giờ sáng, một chiếc tàu cá xuất phát từ đảo Ti Tốp, đi thẳng về hướng Nam với vận tốc không đổi. Nửa tiếng sau, một chiếc tàu du lịch cũng xuất phát từ đảo Ti Tốp, đi thẳng về hướng Đông với vận tốc bé hơn vận tốc tàu cá là 2 km/h. Đến 7 giờ khoảng cách giữa hai tàu là 13 km. Tính vận tốc mỗi tàu. + Cho tam giác ABC có ba góc nhọn, AB < AC. Hai đường cao BE, CF của tam giác ABC cắt nhau tại H. Hai đường thẳng EF và BC cắt nhau tại G. a. Chứng minh tứ giác AEHF nội tiếp. b. Chứng minh GB.GC = GE.GF. c. Đường tròn ngoại tiếp tam giác ABC cắt đường thẳng GA tại I khác A. Chứng minh HI vuông góc AG .