Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề tích phân - Phạm Thanh Phương

Tài liệu gồm 54 trang với nội dung bao gồm lý thuyết, phân dạng, phương pháp giải và bài tập trắc nghiệm chuyên đề tích phân. Nội dung tài liệu gồm các phần: I. ĐỊNH NGHĨA, TÍNH CHẤT CỦA TÍCH PHÂN II. PHƯƠNG PHÁP TÍNH TÍCH PHÂN 1. PHƯƠNG PHÁP PHÂN TÍCH, ĐƯA VỀ TÍCH PHÂN ĐƠN GIẢN – Phương pháp này tính được các tính phân hàm đa thức, hàm có chứa dấu trị tuyệt đối, 1 số hàm lượng giác đơn giản. – Để tính tích phân theo phương pháp này, cần phải nắm định nghĩa tích phân, các tính chất tích phân và thuộc bảng nguyên hàm để có thể biến đổi hàm dưới dấu tích phân về các hàm thường gặp. Từ đó, học sinh có thể linh hoạt đưa bài toán mới về những bài toán cơ bản. 2. PHƯƠNG PHÁP DÙNG VI PHÂN ĐỂ TÍNH TÍCH PHÂN – Một số bài toán đơn giản không cần phải đưa ra biến mới, tức là không cần đặt, biến lấy tích phân vẫn là biến, cận lấy tích phân không đổi. Nói cách khác, ta có thể trình bày gọn bằng công thức vi phân dt(x)=t’(x)dx. Cách làm này ngắn gọn, hiệu quả trong rất nhiều bài toán tích phân. [ads] 3. PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN – Việc lựa chọn và phải thỏa mãn các điều kiện sau: đơn giản, dễ tìm, tích phân mới đơn giản hơn tích phân ban đầu. Chọn hàm để đặt bằng theo thứ tự ưu tiên giảm dần như sau: hàm lôgarit, hàm lũy thừa, hàm số mũ, hàm lượng giác. 4. PHƯƠNG PHÁP ĐỔI BIẾN SỐ DẠNG 1 – Đặt t=t(x) với là x là biến ban đầu, t là biến mới. Khi đổi biến phải đổi cận. 5. PHƯƠNG PHÁP ĐỔI BIẾN SỐ DẠNG 2 – Đặt x=x(t), với x là biến ban đầu, t là biến mới. Khi đổi biến phải đổi cận. – Cách này áp dụng cho 1 số bài toán đặc thù mà không thể hoặc gặp khó khăn khi áp dụng phương pháp phân tích, phương pháp đổi biến dạng 1 hoặc tích phân từng phần. 6. MỘT SỐ LƯU Ý VỀ PHƯƠNG PHÁP ĐỔI BIẾN SỐ III. MỘT SỐ BÀI TOÁN TỔNG HỢP 1. MỘT SỐ BÀI TOÁN TÍCH PHÂN HÀM HỮU TỈ 2. MỘT SỐ BÀI TOÁN TÍCH PHÂN HÀM LƯỢNG GIÁC 3. MỘT SỐ BÀI TOÁN TÍCH PHÂN HÀM VÔ TỈ IV. BÀI TẬP TỰ LUẬN V. CÂU HỎI TRẮC NGHIỆM Đáng chú ý khi tài liệu còn đưa các bài toán thực tế được giải dựa vào phép tính tích phân, ví dụ như: “Một túi nước có trọng lượng 10(N) được nâng từ mặt đất lên không trung với tốc độ cố định. Nước trong túi bị rỉ ra ngoài với tốc độ rỉ nước không đổi. Khi nâng đến độ cao 20 mét thì trong túi không còn nước. Bỏ qua trọng lượng túi, tính công sinh ra khi nâng túi nước nói trên từ độ cao 5 mét đến độ cao 10 mét”.

Nguồn: toanmath.com

Đọc Sách

Sử dụng tính chất của đồ thị hàm số để tính diện tích hình phẳng
Tài liệu gồm 58 trang được biên soạn bởi tập thể quý thầy, cô giáo nhóm Toán VD – VDC, nội dung các dạng toán xoay quanh bài toán ứng dụng tích phân để tính diện tích hình phẳng với giả thiết bài toán cho bởi đồ thị hàm liên quan. + Dạng toán 1. Sử dụng định nghĩa xác định công thức diện tích. + Dạng toán 2. Dựa vào các điểm đồ thị đi qua xác định hàm số đi đến công thức tính. + Dạng toán 3. Dựa vào tâm đối xứng, trục đối xứng của đồ thị xác định hàm số đi đến công thức tính. + Dạng toán 4. Dựa vào tiếp tuyến của đồ thị xác định hàm số đi đến công thức tính. + Dạng toán 5. Biến đổi đồ thị đưa về tính toán đơn giản. + Dạng toán 6. Tính diện tích dựa vào việc chia nhỏ hình. + Dạng toán 7. Toán thực tế với giả thiết có đồ thị hàm liên quan. Các bài toán trắc nghiệm được trích dẫn và phát triển dựa trên các bài toán trong đề thi THPT Quốc gia môn Toán, có đáp án và lời giải chi tiết.
Các dạng toán ứng dụng của tích phân thường gặp trong kỳ thi THPTQG
Tài liệu ứng dụng của tích phân gồm 113 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng của tích phân cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán ứng dụng của tích phân thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1. Ứng dụng tích phân để tìm diện tích (Trang 1). + Dạng 1.1 Bài toán tính trực tiếp không có điều kiện (Trang 1). + Dạng 1.2 Bài toán có điều kiện (Trang 13). Dạng 2. Ứng dụng tích phân để tìm thể tích (Trang 23). + Dạng 2.1 Bài toán tính trực tiếp không có điều kiện (Trang 23). + Dạng 2.2 Bài toán có điều kiện (Trang 28). Dạng 3. Ứng dụng tích phân để giải bài toán chuyển động (Trang 30). + Dạng 3.1 Bài toán cho biết hàm số của vận tốc, quảng đường (Trang 30). + Dạng 3.2 Bài toán cho biết đồ thị của vận tốc, quảng đường (Trang 33). Dạng 4. Ứng dụng tích phân để giải một số bài toán thực tế (Trang 37). + Dạng 4.1 Bài toán liên quan đến diện tích (Trang 37). + Dạng 4.2 Bài toán liên quan đến thể tích (Trang 41). Dạng 5. Ứng dụng tích phân để giải quyết một số bài toán đại số (Trang 45). [ads] PHẦN B . LỜI GIẢI THAM KHẢO Dạng 1. Ứng dụng tích phân để tìm diện tích (Trang 48). + Dạng 1.1 Bài toán tính trực tiếp không có điều kiện (Trang 48). + Dạng 1.2 Bài toán có điều kiện (Trang 60). Dạng 2. Ứng dụng tích phân để tìm thể tích (Trang 74). + Dạng 2.1 Bài toán tính trực tiếp không có điều kiện (Trang 74). + Dạng 2.2 Bài toán có điều kiện (Trang 81). Dạng 3. Ứng dụng tích phân để giải bài toán chuyển động (Trang 84). + Dạng 3.1 Bài toán cho biết hàm số của vận tốc, quảng đường (Trang 84). + Dạng 3.2 Bài toán cho biết đồ thị của vận tốc, quảng đường (Trang 88). Dạng 4. Ứng dụng tích phân để giải một số bài toán thực tế (Trang 91). + Dạng 4.1 Bài toán liên quan đến diện tích (Trang 91). + Dạng 4.2 Bài toán liên quan đến thể tích (Trang 99). Dạng 5. Ứng dụng tích phân để giải quyết một số bài toán đại số (Trang 108). Xem thêm : + Các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG + Các dạng toán tích phân thường gặp trong kỳ thi THPTQG
Các dạng toán tích phân thường gặp trong kỳ thi THPTQG
Tài liệu tích phân và các phương pháp tìm tích phân gồm 109 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề tích phân cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán tích phân thường gặp trong kỳ thi THPTQG: Phần A . CÂU HỎI Dạng 1. Tích phân cơ bản (Trang 2). + Dạng 1.1 Áp dụng TÍNH CHẤT để giải (Trang 2). + Dạng 1.2 Áp dụng bảng công thức cơ bản (Trang 4). Dạng 2. Tích phân HÀM HỮU TỶ (Trang 7). Dạng 3. Giải tích phân bằng phương pháp VI PHÂN (Trang 10). Dạng 4. Giải tích phân bằng phương pháp ĐỔI BIẾN SỐ (Trang 11). + Dạng 4.1 Hàm số tường minh (Trang 11). + Dạng 4.1.1 Hàm số chứa căn thức (Trang 11). + Dạng 4.1.2 Hàm số chứa hàm lượng giác (Trang 14). + Dạng 4.13. Hàm số chứa hàm số mũ, logarit (Trang 16). + Dạng 4.1.4 Hàm số hữu tỷ, đa thức (Trang 17). + Dạng 4.2 Hàm số không tường minh (hàm ẩn) (Trang 18). Dạng 5. Tích phân TỪNG PHẦN (Trang 22). + Dạng 5.1 Hàm số tường minh (Trang 22). + Dạng 5.2 Hàm số không tường minh (hàm ẩn) (Trang 25). Dạng 6. Kết hợp nhiều phương pháp để giải toán (Trang 29). Dạng 7. Tích phân của một số hàm số khác (Trang 31). + Dạng 7.1 Tích phân hàm số chứa dấu giá trị tuyệt đối (Trang 31). + Dạng 7.2 Tích phân nhiều công thức (Trang 32). + Dạng 7.3 Tích phân hàm số chẵn, lẻ (Trang 33). Dạng 8. Một số bài toán tích phân khác (Trang 34). [ads] Phần B . LỜI GIẢI THAM KHẢO Dạng 1. Tích phân cơ bản (Trang 38). + Dạng 1.1 Áp dụng TÍNH CHẤT để giải (Trang 38). + Dạng 1.2 Áp dụng bảng công thức cơ bản (Trang 40). Dạng 2. Tích phân HÀM HỮU TỶ (Trang 43). Dạng 3. Giải tích phân bằng phương pháp VI PHÂN (Trang 46). Dạng 4. Giải tích phân bằng phương pháp ĐỔI BIẾN SỐ (Trang 48). + Dạng 4.1. Hàm số tường minh (Trang 48). + Dạng 4.1.1. Hàm số chứa căn thức (Trang 48). + Dạng 4.1.2. Hàm số chứa hàm lượng giác (Trang 54). + Dạng 4.1.3. Hàm số chứa hàm số mũ, logarit (Trang 57). + Dạng 4.1.4. Hàm số hữu tỷ, đa thức (Trang 59). + Dạng 4.2. Hàm số không tường minh (hàm ẩn) (Trang 60). Dạng 5. Tích phân TỪNG PHẦN (Trang 68). + Dạng 5.1 Hàm số tường minh (Trang 68). + Dạng 5.2 Hàm số không tường minh (hàm ẩn) (Trang 74). Dạng 6. Kết hợp nhiều phương pháp để giải toán (Trang 88). Dạng 7. Tích phân của một số hàm số khác (Trang 91). + Dạng 7.1 Tích phân hàm số chứa dấu giá trị tuyệt đối (Trang 91). + Dạng 7.2. Tích phân nhiều công thức (Trang 95). + Dạng 7.3 Tích phân hàm số chẵn, lẻ (Trang 95). Dạng 8. Một số bài toán tích phân khác (Trang 100).
Các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG
Tài liệu nguyên hàm và các phương pháp tìm nguyên hàm gồm 75 trang được biên soạn bởi thầy Nguyễn Bảo Vương, tuyển tập các câu hỏi và bài toán trắc nghiệm chủ đề nguyên hàm cùng các vấn đề liên quan, có đáp án và lời giải chi tiết, các câu hỏi và bài toán được tác giả trích dẫn từ các đề thi THPT Quốc gia môn Toán những năm gần đây. Khái quát nội dung tài liệu các dạng toán nguyên hàm thường gặp trong kỳ thi THPTQG: PHẦN A . CÂU HỎI Dạng 1. Nguyên hàm cơ bản (dùng bảng nguyên hàm) (Trang số 2). + Dạng 1.1 Tìm nguyên hàm cơ bản không có điều kiện (Trang số 2). + Dạng 1.2 Tìm nguyên hàm cơ bản có điều kiện (Trang số 11). Dạng 2. Sử dụng phương pháp VI PHÂN để tìm nguyên hàm (Trang số 16). + Dạng 2.1 Tìm nguyên hàm không có điều kiện (Trang số 16). + Dạng 2.2 Tìm nguyên hàm có điều kiện (Trang số 17). Dạng 3. Sử dụng phương pháp ĐỔI BIẾN để tìm nguyên hàm (Trang số 18). + Dạng 3.1 Tìm nguyên hàm không có điều kiện (Trang số 18). + Dạng 3.2 Tìm nguyên hàm có điều kiện (Trang số 21). Dạng 4. Nguyên hàm từng phần (Trang số 22). + Dạng 4.1 Tìm nguyên hàm không có điều kiện (Trang số 22). + Dạng 4.2 Tìm nguyên hàm có điều kiện (Trang số 25). Dạng 5. Sử dụng nguyên hàm để giải toán (Trang số 26). Dạng 6. Một số bài toán khác liên quan đến nguyên hàm (Trang số 30). [ads] PHẦN B . ĐÁP ÁN THAM KHẢO Dạng 1. Nguyên hàm cơ bản (dùng bảng nguyên hàm) (Trang số 33). + Dạng 1.1 Tìm nguyên hàm cơ bản không có điều kiện (Trang số 33). + Dạng 1.2 Tìm nguyên hàm cơ bản có điều kiện (Trang số 38). Dạng 2. Sử dụng phương pháp VI PHÂN để tìm nguyên hàm (Trang số 44). + Dạng 2.1 Tìm nguyên hàm không có điều kiện (Trang số 44). + Dạng 2.2 Tìm nguyên hàm có điều kiện (Trang số 45). Dạng 3. Sử dụng phương pháp ĐỔI BIẾN để tìm nguyên hàm (Trang số 47). + Dạng 3.1 Tìm nguyên hàm không có điều kiện (Trang số 47). + Dạng 3.2 Tìm nguyên hàm có điều kiện (Trang số 51). Dạng 4. Nguyên hàm từng phần (Trang số 53). + Dạng 4.1 Tìm nguyên hàm không có điều kiện (Trang số 53). + Dạng 4.2 Tìm nguyên hàm có điều kiện (Trang số 57). Dạng 5. Sử dụng nguyên hàm để giải toán (Trang số 60) Dạng 6. Một số bài toán khác liên quan đến nguyên hàm (Trang số 69). Tài liệu giúp quý thầy, cô giáo có nguồn bài tập chất lượng về nguyên hàm để tham khảo, các em học sinh học tốt chương trình Giải tích 12 chương 3 và ôn tập chuẩn bị cho kỳ thi Trung học Phổ thông Quốc gia môn Toán.