Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm học 2016 2017 sở GD và ĐT Hải Dương

Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm học 2016 2017 sở GD và ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi tỉnh môn Toán lớp 10 năm học 2016 – 2017 sở GD và ĐT Hải Dương Đề thi chọn học sinh giỏi tỉnh môn Toán lớp 10 năm học 2016 – 2017 sở GD và ĐT Hải Dương Đề thi chọn học sinh giỏi tỉnh môn Toán lớp 10 năm học 2016 – 2017 của sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, mỗi bài toán đều có hướng dẫn giải cụ thể và đề thi có thang điểm rõ ràng. Trong đề thi, một trong số bài toán được đưa ra như sau: + Một nông trại có diện tích 5 ha dự định trồng cà rốt và khoai tây. Để chăm sóc các loại cây này, nông trại phải sử dụng phân vi sinh. Việc trồng 1 ha cà rốt cần 3 tấn phân vi sinh và mang lại 50 triệu đồng tiền lãi, trồng 1 ha khoai tây cần 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích bao nhiêu để thu được tổng số tiền lãi cao nhất, biết rằng tổng số phân vi sinh không vượt quá 18 tấn. Đây là một trong những bài toán phức tạp nhưng rất thú vị trong đề thi môn Toán lớp 10 tại Hải Dương, đòi hỏi học sinh có khả năng tư duy logic, tính toán chính xác và kỹ năng giải quyết vấn đề. Bằng cách tiếp cận vấn đề một cách cẩn thận và phân tích kỹ lưỡng, học sinh sẽ có cơ hội thể hiện tốt khả năng toán học của mình và giành được điểm cao trong bài thi này.

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 10 cấp tỉnh năm 2016 - 2017 sở GDĐT Lai Châu
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi môn Toán 10 cấp tỉnh năm học 2016 – 2017 sở Giáo dục và Đào tạo UBND tỉnh Lai Châu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 10 cấp tỉnh năm 2016 – 2017 sở GD&ĐT Lai Châu : + Với giá trị nào của m thì đồ thị hàm số 2 y mx m x m 3 6 cắt trục hoành tại 2 điểm phân biệt có hoành độ 1 x và 2 x thỏa mãn điều kiện 1 2 x x 2 1. + Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có điểm A 1 3 đường phân giác trong góc A có phương trình xy20 tâm đường tròn ngoại tiếp tam giác ABC là I 3 6. Viết phương trình đường thẳng BC, biết diện tích tam giác ABC gấp 4 lần diện tích tam giác IBC. + Cho tam giác ABC nhọn, không cân nội tiếp đường tròn (O) có đường cao AH H BC và tâm đường tròn nội tiếp là I. Gọi M là điểm chính giữa cung nhỏ BC của (O) và D là điểm đối xứng với A qua O. Đường thẳng MD cắt các đường thẳng BC, AH theo thứ tự tại P và Q. Chứng minh rằng tam giác IPQ vuông.
Đề thi chọn học sinh giỏi tỉnh Toán 10 năm 2015 - 2016 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi tỉnh Toán 10 năm 2015 – 2016 sở GD&ĐT Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán 10 năm 2015 – 2016 sở GD&ĐT Hà Tĩnh : + Trong mặt phẳng với hệ trục tọa độ Oxy, cho tam giác nhọn ABC có đường cao AH (H ∈ BC) và D, E lần lượt là trung điểm của AB, AC. Gọi F là điểm đối xứng với B qua E. Giả sử F(−3; 3) và đường trung trực của CH có phương trình x − 1 = 0. Tìm tọa độ giao điểm M của các đường thẳng HD, FA. Tìm tọa độ giao điểm N của tia CD với đường tròn ngoại tiếp tam giác ABC (N 6= C), biết đường thẳng đi qua N và tâm đường tròn ngoại tiếp tam giác HCF có phương trình x − 2y − 1 = 0. + Một vùng đất hình chữ nhật ABCD có AB = 25 km, BC = 20 km và M, N lần lượt là trung điểm của AD, BC. Một người cưỡi ngựa xuất phát từ A đi đến C bằng cách đi thẳng từ A đến một điểm X thuộc đoạn MN rồi lại đi thẳng từ X đến C. Vận tốc của ngựa khi đi trên phần ABNM là 15 km/h, vận tốc của ngựa khi đi trên phần MNCD là 30 km/h. Tìm vị trí của X để thời gian ngựa di chuyển từ A đến C là ít nhất? + Tìm giá trị lớn nhất của số nguyên dương n sao cho tồn tại n tam thức bậc hai khác nhau từng đôi một thỏa mãn đồng thời các điều kiện sau: i) mỗi tam thức bậc hai có hệ số của x 2 bằng 1; ii) tổng của 2 tam thức bậc hai bất kỳ có đúng 1 nghiệm (hai tam thức bậc hai là khác nhau nếu có ít nhất một hệ số tương ứng khác nhau).
Đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 - 2015 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi học sinh giỏi cấp tỉnh Toán 10 năm học 2014 – 2015 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 10 năm 2014 – 2015 sở GD&ĐT Hà Tĩnh : + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC. Gọi H K, lần lượt là chân đường cao hạ từ các đỉnh B C, của tam giác ABC. Tìm tọa độ các đỉnh của tam giác ABC biết 1 3 5 1 5 5 H K phương trình đường thẳng BC là x 3 40 y và điểm B có hoành độ âm. + a) Cho tam giác ABC có trọng tâm G. Chứng minh rằng nếu AC là tiếp tuyến của đường tròn ngoại tiếp tam giác GAB thì 22 2 cos cos 2cos A C B. b) Cho các số thực dương a bc thỏa mãn abbcca 8. Tìm giá trị nhỏ nhất của biểu thức 3 1111 P abc a bb cc a 222. + Kí hiệu E là tập hợp gồm tất cả các tam thức bậc hai f x ax bx c có a 0 2 b ac 4 0. Tìm điều kiện cần và đủ đối với các số mn p để với mọi f x thuộc E ta đều có g x f x m ax b n bx c p cx a cũng thuộc E.
Đề thi học sinh giỏi Toán 10 năm 2012 - 2013 trường THPT Thuận An - TT Huế
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học sinh giỏi Toán 10 năm học 2012 – 2013 trường THPT Thuận An, tỉnh Thừa Thiên Huế; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề thi học sinh giỏi Toán 10 năm 2012 – 2013 trường THPT Thuận An – TT Huế : + Cho phương trình 2 mx m x m 2 1 2 0 m là tham số 1. Tìm m để phương trình đã cho có một nghiệm. 2. Tìm m để phương trình đã cho có hai nghiệm thỏa mãn nghiệm này gấp hai lần nghiệm kia. + Cho tam giác ABC. Trên các cạnh AB, BC, CA lấy lần lượt các điểm M, N, P thỏa mãn AM AB BC 2 BN BC AC 3 CP CA 2. Chứng minh rằng hai tam giác ABC và MNP có cùng trọng tâm. + Gọi a, b, c là độ dài ba cạnh của tam giác abc hhh là độ dài ba đường cao tương ứng ba cạnh đó; r là bán kính đường tròn nội tiếp tam giác đó.